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SETTING

e Stochastic Gradient Descent (SGD): We study streaming SGD with batch size 1. At each
iteration, the algorithm computes a stochastic gradient based on a single data point and
moves one step in the decreasing direction

 High-Dimensional Linear (High Line) Composite Models: Our theorem applies to
various models including linear regression, logistic regression, and simple neural nets

GOAL

Analyze the dynamics of SGD with adaptive learning rates (SGD+AL) in high dimensions

Main Contributions

* Training dynamics of SGD+AL converge to the solution of a deterministic system of ODEs
* Greed can be arbitrarily bad in the presence of strong anisotropy

 AdaGrad-Norm selects the optimal learning rate, provided it has a warm start

 AdaGrad-Norm can use overly pessimistic decaying schedules on hard problems

Model Setup

OPTIMIZATION PROBLEM SGD+AL ALGORITHM
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* |Kl[,p, [[X*|l bounded independent of d
norms ||X;||,

e Includes problems like: least squares,

_ : * v, 1s bounded in its arguments
logistic regression, one-neuron networks

* Includes algorithms like: AdaGrad-Norm,

e Our goal is to classify limiting behavior as .
RMSProp, DoG, D-Adaptation
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Specific Algorithms

EXAMPLE: ADAGRAD-NORM
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Require: n>0,x, €RY b €R, by = bd

fork=1,2,...,do

 AdaGrad, but with a global learning rate
rather than adjusted on a per-weight

basis. Take ak ~ JV(O K) Ek ~ JV(O, CL)Z),
o , V, <« Vf(a'x;a, x*, e)
o Yl k k k k
Stepsize is automatically bounded by . b2 . bz i ”ka 5.
e Depends only on the norms ||V f ||, of past Y1 € d X |bk|; > update stepsize
gradients. Xp — X — 22V > weights

end for

We define S: RY — R2*2 given by

x' R(z,K)x x'R(z,K)x*
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where R(z,K) = (K—z-1;)"" forz € C\ o(K)
is the resolvent of K

THEOREM [INFORMAL ]

S along SGD concentrates around the
deterministic solution to the system of ODEs

dF(t; 2)=ZF (Z(t; 2))

We consider ¢ : R? — R given by .

_ (¥ a®x xTqm)x* )
SO(X) — 8 (_XT q(K) x* (X*)T q(K) X*_)

where g is a-pseudo-Lipschitz with a <1
and g is a polynomial

Can recover R(x) and D(x) = © |x —x*|| from ¢

Using Cauchy’s integral formula,

p(x)=g (2%4 q(z)S(x; Z)dZ)

where I is a fixed contour around spectrum of K

COROLLARY [INFORMAL ]

¢ along SGD concentrates around the .
deterministic function

b(0)= g (;ﬂ% () (¢, z)dz)

We refer to ¢ as deterministic equivalent of ¢

In particular, we define £ and & as deterministic
equivalents of R and D, respectively

We can derive an ODE d¢(t) = 4 (< (t; 2))

AdaGrad-Norm Least Squares AdaGrad-Norm Logistic Regression
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Concentration of learning rate and risk for AdaGrad-Norm on least squares with label noise
w =1 (left) and logistic regression with no noise (right). As dimension increases, both risk and
learning rate concentrate around a deterministic limit (red) described by our ODE. The initial

risk increase (left) suggests the learning rate started too high, but AdaGrad-Norm adapts. Our
ODE:s predict this behavior.

Beyond Gaussian Data: CIFAR-5m

xc€Rd

Xk+1 = Xk — Tk (flkﬂ

e Binary classification with least squares;
Y1 1s AdaGrad-Norm learning rate.

e Take n images from two classes of
CIFAR-5m, reshape into a matrix A €
R™192% (preconditioned to have centered
rows with norm 1.) b € R" has b; = 1
if the corresponding image is an airplane
and b; = 0 otherwise.

e Generate matrix W € R192%d with

iid Gaussian entries, set features F =
relu(AW).

e Shown: AdaGrad-Norm true vs predicted
loss for d = 2000. Concentration is
nearly perfect.

e For small n, SGD can overfit and learn
quickly; for larger n, a general mapping
must be learned, so loss decreases more
slowly.

min {R(X) — HFX b||* =

X — bik+1) fik+1’

DISCRETE PROBLEM
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CIFAR AdaGrad-Norm Least Squares
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Classical Idealized Algorithms Analysis

Two main interests for choosing the learning rate at each iteration:
maximize the decrease in risk or in distance to optimality

* For stochastic algorithms, this is not feasible

Consider the stochastic idealized algorithms whose deterministic equivalents satisfy

yhine Search ¢ aremind22(t) EXACT LINE SEARCH
14
Polyak .
Y € argmind%(t) POLYAK
14

In the noiseless least squares problem with A .. (K) > C > 0,
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Comparison for Exact Line Search and Polyak on a noiseless least squares problem. The

left plot illustrates the convergence of the risk function, while the right plot depicts the

convergence of the quotient y,/3 I;IH((KZ)) for Polyak and Exact Line Search. Both plots highlight

that, in high-dimensional settings, a broader spectrum of K results in 1“““( Y <« —

7 = Tr(K?2) 7 Tr(K)
slower risk convergence and poorer performance of Exact Line Search (unmarked) as it deviates
from Polyak (circle markers).
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We analyze the behavior of AdaGrad-Norm in the least squares setting. In the presence of
additive noise, the learning rate decays like t7'/2, regardless of the data covariance K. In
contrast, the model with no noise exhibits a learning rate that depends on the spectrum of K.
We consider three cases:

SPECTRUM OF K BOUNDED BELOW 0(d) EIGENVALUES BELOW FIXED THRESHOLD

In the noiseless least squares problem with

With o(d) eigenvalues below some fixed
A.in(K) > C > 0, integrable risk, = Ztr(K) <

n threshold, x* not aligned with eigenvectors,

9 X, = 0, there exists ¥ > 0 such that
v AdaGrad-Norm _ T
L b, 1 2° AdaGrad-Norm ~
o 1 2 tr(K) [|Ixo —x*| Y, >y forallt > 0.

POWER LAW COVARIANCE SUPPORTED ON (0,1) AT d — o0

When the spectrum of K and x* converge to the power law measures p(1) = (1 — AP Lo 1)
and ((XO - X*)Ta)i)z ~ Ai_5, then, forall t > 1,

if0 < [)’ + 0 < 1, AdaGrad-Norm > Y

there exists y > 0 such that y,
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Phase transition as 0 + 3 varies. When 0 + 6 < 1 (green), the learning rate (right) is constant
as t — o0. In contrast, when 2 > 0 + > 1 (purple), the learning rate decreases at a rate

t—1+1/(b+0) with § + B = 1 (white) where the change occurs. Same phase transition occurs in
the sublinear rate of the risk decay (left).

Future Questions

 Can we extend our analysis to ...

 Can we generalize our theorem to ...

— D-adaptation? — non-Gaussian data?
— DoG?

— RMSProp?

— non-convex problems?
— different risk structures?

e Conclusions about catapult mechanism?

* Analogous result for multi-pass SGD?
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