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Introduction

* Proteins can be represented as sequences of tokens composed of 20 types of amino acids.
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Protein Sequence (Amino acid string)

* Protein language models, pre-trained on databases with millions of protein sequences with
BERT or GPT tasks, have become fundamental tools for protein function prediction.
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BERT-Style Pre-training (Masked token prediction) GPT-Style (Next token prediction)
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Introduction

« However, an essential property of proteins is that they form 3D structures, and this structure determines
the protein's function.

* Only using amino acid token sequences may be insufficient.

Sequence 3D Structure Function

* Previous protein language models did not consider the 3D structure because structure data is hard to
gather.
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Introduction

» Luckily, AlphaFold 2 (which has won the 2024 Nobel Prize in Chemistry) can predict protein structures and
has increased the protein structure database to millions, making it possible to develop structure-aware
pre-traind protein language models.

2024 Nobel Prize in ChemiStry: Pioneering Comp“‘:ational AlphaFold Protein Structure Database Home About FAQs Downloads  API
Protein Design and Al-Powered Predictions

AlphaFold
Protein Structure Database

Developed by Google DeepMind and EMBL-EBI

Database releases July 2021 Dec 2021 Jan 2022 July 2022
David Baker Demis Hassabis John M. Jumper Nursisee of prediclis 365,000 Bt 995.000 214,000,000
SR . . SEE umber of predi ; ) , Drot Tr
Prize sh.'u'e. 1/2 . Prize sl.lare. /4 Prize share: 1/4 structures in 21 proteomes +SwissProt +Tropical LUnIBCt IEMBE
For Computational Protein  For Protein Structure  Fop Protein Structure AFDB diseases
Design Prediction Prediction

Barrio-Hernandez, et al. Nature. 2023.

2024 Nobel Prize in Chemistry AlphaFold Database
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What is ProSST?

ProSST (Protein Sequence-Structure Transformer) is a structure-aware protein language model with structure
guantization and disentangled attention.

ProSST

Structure Quantized Disentangled Attention Pre-training on
Module Based Transformer AlphaFold-DB




Protein Structure Quantization
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Figure 1: The pipeline of structure quantization. (A) Training of the structure encoder. (B) Local
structure clustering and labeling. (C) Converting a protein structure to structure token sequence.
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Why We Do Structure Quantization?

/Goalz To pre-train\

a structure-aware
protein language
model on the
large-scale protein
structure database

\ (AFDB). /

Reason #1
e TS OEL & 12 st The transformer model is We need structure
SO VB0 MECIE ol pite- designed for discrete data uantization
training. (Scaling Ability) g ' . '
Reason #2
. [ - Directl ing th
The structures are all predicted f‘lpha}FOIdz BeeeEy ectly using these
earning model. It may predicted structures
by AlphaFold 2. .
have some latent patterns. causes over-fitting
Protein structure quantization We need structure
IS a good regularization choice. regularization.

Reason #3

Discrete structure is convenient to use
and storage for large-scale pre-training.
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Disentangled Attention-based Transformer

Un-masked Residue tokens
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Structure quantization
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Figure A6: Different types of attentions on Green Fluorescent Protein (GFP). These attentions are the
average of each head in the final layer of the Transformer.

Protein
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Pre-training ProSST on AFDB

Pre-training Data (18 Million Structures)

Un-masked Residue tokens

[ Decoder J
) . b = Highest pLDDT 4 Fragment
( L ) Disentangled Attention ® pr..eseﬁ,aﬁve
X /1 R =Residue / 8§ = Structure / P = Position — N e
/ - MMseqs2 cluster e Foldseek clusfer
~ K —  90% sequence overlap | ... 90% structure oferlap @ @ Renfove @ Remove
F forwar ' J 50% sequence identity E <0.01 2/ fragnients singletons
eeda-rorwa
: s = e T e ®
I ’ — N @t .
1 — sea en wee
," 214 million 52.3 million 18.8 million clusters 15.3 million  2.30 million clusters
Norm /; proteins clusters Foldseek clusters clusters AFDB clusters
/ RtoS StoR RtoP AFDB AFDBS0

Barrio-Hernandez, et al. Nature. 2023.
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Disentangled
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Norm IR
y Norm ]
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I—I €M
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Structure quantization A M as ke d |aﬂ g uage m Od e“ ng on
module

the residue tokens.

Protein
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Results (Transfer Learning)

DeepLoc Metal Ion Binding Thermostability = GO-MF GO-BP GO-CC

Model #Params Acc% T Acc% 1 ps T F1-Max* F1-Max{ F1-Max 1
ESM-2 650M 91.96 71.56 0.680 0.670 0.473 0.470
ESM-1b 650M 92.83 73.57 0.708 0.656 0.451 0.466
MIF-ST 643M 91.76 75.08 0.694 0.633 0.375 0.322
GearNet 42M 89.18 71.26 0.571 0.644 0.481 0.476
SaProt-35M 35M 91.97 74.29 0.692 0.642 0.431 0.418
SaProt-650M 650M 93.55 75.75 0.724 0.682 0.486 0.479
ESM-GearNet 690M 93.55 74.11 0.651 0.676 0.516 0.507
ProSST 110M  94.32(:0.10) 76.37 x0.02) 0.726(:0.09) 0.682:0.003 0.492¢:x0009 0.501(20.002)

Table 2: Comparison of supervised fine-tuning on downstream tasks. ps; denotes the Spearman
correlation coefficient.
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Results (Zero-shot mutant effect prediction)

Model Model Type psT NDCG1T Top-recall T
EVE [49] 0.439 0.781 0.230
EVmutation [53] 0.395 0.777 0.222
DS o 047 0702
GEMME [47] 0.457 0.777 0.211
MSA-Transformer [48] 0.434 0.779 0.217
Tranception [21] 0.434 0.779 0.220
RITA [44] 0.372 0.751 0.193
UniRep [45] 0.190 0.647 0.139
ESM-1v [6] Sequence-based 0.374 0.732 0.211
ESM-2 [7] 0.414 0.747 0.217
ProGen2 [22] 0.391 0.767 0.199
VESPA [46] 0.394 0.759 0.201
ESM-IF [37] Inverse-folding 0.422 0.748 0.223
MIF-ST [38] 0.401 0.765 0.226
Trancepiton-EVE [52] 0.457 0.786 0.230
ESM-1v* [6] Ensemble Models 0.407 0.749 0.211
DeepSequence* [51] 0.419 0.776 0.226
SaProt [14] 0.457 0.768 0.233
ProSST Sequence-Structure models o 504 (777 0.239

Table 1: Comparison of zero-shot mutation prediction performance on ProteinGYM benchmark [43]
between ProSST and other models. p, is the Spearman rank correlation.
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Ablation Results (Quantized structure)

DeepLoc ProteinGYM Pretraining

Acc% 1 psT NDCG1 Top-Recall T Perplexity |

ProSST (K=4096) 93.88 (+0.15) 0.498 0.773 0.233 8.880
ProSST (K=2048) 94.32 (+0.10) 0.504 0.777 0.239 9.033
ProSST (K=1024) 93.43 (£0.15) 0.485 0.760 0.231 9.333
ProSST (K=512)  93.70 (+0.16) 0.471 0.759 0.223 9.577
ProSST (K=128)  93.14 (+0.04) 0.469 0.753 0.228 10.021
ProSST (K=20) 93.05 (#0.13) 0.438 0.744 0.210 10.719
ProSST (K=1) 89.48 (x0.24) 0.390 0.738 0.181 12.182
ProSST (K=0) 89.77 (£0.26)  0.392 0.741 0.184 12.190
ProSST (Foldseek) 93.08 (£0.22) 0.468 0.759 0.228 10.049
ProSST (DSSP) 93.16 (x0.16) 0.439 0.760 0.204 10.009

Table 3: Ablation studies on quantized structure. We first show the performance of our models with
K centroids of local structures. ProSST (K=0) refers to the model without structure token sequence.
We also replace the proposed quantization method with existing Foldseek and DSSP, and show the
results of these variants.
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Conclusion & Future work

« We propose a protein structure quantization module, which can convert a protein structure into
a sequence of discrete tokens

 We propose a disentangled attention Transformer to learn the relationship between protein
structure and sequence.

 We pre-train our model on 18 millions of protein structures and it has achieved good
performance in multiple tasks.

Future work

» Develop larger model with larger database.

» Study the structure search ability of our quantization module.
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