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Long-form Contents
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There are various long-form contents in our daily lives.

~8k tokens

A research paper

~32k tokens

A novella A short video

~128k tokens

A novel An EP of an animeA gif meme



Long Context LLMs
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Context-length supported by LLMs also grows rapidly

32k tokens 128k tokens4k tokens



Impact of Long Context
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Long context attention can be the latency bottleneck of LLM decoding

LongChat-7b-v1.5-32k (batch-size=8)



Impact of Long Context
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LongChat-7b-v1.5-32k (batch-size=8)

Long context can be the memory bottleneck of LLM decoding, 
which hampers the use of larger batch-size for serving.



Observation: Token-level Sparsity of KV Cache
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In most LLM layers, less than 10 KV-cache pages (page-size=32) 
contributing over 99% of attention scores.

We can only keep those important tokens to save memory and 
make attention computation more efficient.



Observation: Dynamism of Token Importance
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The attention score ranking of different KV-cache pages over decoding steps.

Importance of KV-cache token/page can dynamically change overtime

Top-25 
Rankings



Observation: Dynamism of Token Importance
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Previous works permanently evict unimportant tokens based on history 
attention scores, but the evicted tokens may be important in the future.

We propose a method named ArkVale to properly recall important 
tokens as well as evict unimportant ones during LLM decoding.



ArkVale: Workflow Overview
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top-k (k=4) pages must 
participate attention



Page Summarization & Importance Estimation
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Definition: For a page with keys 𝐾 = 𝐤 𝑖
𝑖=1

𝑛
(𝐤 𝑖 ∈ ℝ𝑑), and a query 𝐪 ∈ ℝ𝑑, the page 

importance of 𝐾 in terms of 𝐪 is defined as max
𝐤∈𝐾

𝐪 ⋅ 𝐤

Observation: 𝐤′ = argmax
𝐤∈𝐾

𝐪 ⋅ 𝐤 must be one of the “outmost” points of 𝐾

Solution: We can use the concept of bounding-volume (from computer graphics area) for 
page summarization and importance estimation.

https://www.ncollide.org/bounding_volumes/

Bounding-Sphere Bounding-Cuboid 
(Axis-Aligned Bounding Box)

Oriented Bounding Box Convex Hull

https://www.ncollide.org/bounding_volumes/


Bounding-Sphere for Summarization & Estimation
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Page Keys: 𝐾 = 𝐤 𝑖
𝑖=1

5

Page Digest: Sphere (𝐜, 𝑟)

Summarizing

Computing
Importance 

with 𝐪

Estimating 
Importance 

with 𝐪

Estimated Importance: 𝐪 ⋅ (𝐜 +
𝑟

𝐪
𝐪)

Computed Importance: 𝐪 ⋅ 𝐤(2)



Bounding-Cuboid for Summarization & Estimation
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Page Keys: 𝐾 = 𝐤 𝑖
𝑖=1

5

Page Digest: Cuboid (𝐛min, 𝐛max)

Summarizing

Computing
Importance 

with 𝐪

Estimating 
Importance 

with 𝐪

Computed Importance: 𝐪 ⋅ 𝐤(2)

Estimated Importance: 𝐪 ⋅ 𝐛max =
sum(max(𝐪⊙ 𝐛min, 𝐪 ⊙ 𝐛max))

𝐛min = min
𝐤∈𝐾

𝐤

𝐛max = max
𝐤∈𝐾

𝐤



Evaluation Setup
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Platform

Intel(R) Xeon(R) Gold 6348 CPUs

NVIDIA A100 80GB PCIe GPU

Baseline Method

Origin/Full Without KV-cache eviction

StreamingLLM (ICLR’23) Retain initial tokens + recent tokens

H2O (NIPS’23) Evict tokens based on history scores

TOVA Evict tokens based on history scores

Base Model

LongChat-v1.5-32k

Benchmark

Long-Bench



Importance Estimation Accuracy
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Baseline method (centroid) cannot achieve even 60% top-5 recall accuracy. 

Our methods can achieve 60% top-𝑘 recall accuracy for all 𝑘.

Our cuboid-mean method ensure 95% top-1 recall accuracy, and can achieve 80% 
top-𝑘 recall accuracy for all 𝑘.

Top-k recall accuracy of different importance estimation methods



Part of Evaluation Results on Long-Bench 
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ArkVale can surpass all baselines with different datasets and cache-budgets.

ArkVale can approach or even surpass “Origin”.

ArkVale-16 (page-size=16) usually outperforms ArkVale-32 (page-size=32).

Origin
Origin

Origin

ArkVale

ArkVale
ArkVale



Performance Evaluation
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Allocate 40 GB GPU memory for KV-cache (and page digests) in A100 GPU.

Compared to baseline, ArkVale can achieve up to 2.2x decoding speedup.

Compared to baseline, ArkVale can achieve up to 6x decoding throughput.



Summary
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ArkVale: Efficient Generative LLM Inference with Recallable Key-

Value Eviction

➢Page-based KV-cache Eviction & Recall

➢Page Summarization & Importance Estimation based on 

Bounding-volume

ArkVale performs well on various long context tasks with 

few accuracy loss under a cache budget of 2k∼4k and 

speeds up decoding latency by 2.2× and boosts throughput 

to 6× in long-context scenarios.

Thanks for listening! E-mail us to ask follow-up questions: crz@pku.edu.cn

Our code is now open-sourced at https://github.com/pku-liang/ArkVale

Scan to access our code

https://github.com/pku-liang/ArkVale

