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Motivation
Convergence of RL algorithms

• RL algorithms shows good performance in practice but its theoretical convergence 
is not well-established even in the linear function approximation scheme.
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• Can we develop a convergent Q-learning algorithm under the linear 
function approximation scheme?



Contributions

1. We propose a Q-learning algorithm that is convergent with linear function 
approximation.


2. The convergence of Q-learning with -regularization is established under 
mild conditions, and its proof is based on the switched system analysis.


3. We analyze the solution of the projected optimal Bellman equation with 
regularization, where the iterate of the algorithm converges to.


4. Finally, experimental results are provided.
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Q-learning with linear function approximation

• Projected (Optimal) Bellman Equation : 

X⊤DX − γX⊤DPΠXθXθ = X⊤DR .

• We want to approximate the Q-function :  where  Qπ(s, a) ≈ x(s, a)⊤θ θ, x(s, a) ∈ ℝh

•The result of Bellman operator may not be in the column space of . Therefore, 
we project it back to the column space of .

X
X

• Illustration or projection on to the column of :X

•Does it have a solution?

•An example of non-existence of the solution was provided by De Farias et al., 2000.
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Regularized Projected (optimal) Bellman equation
• Regularized Projected Bellman Equation : X⊤DX+ηI−γX⊤DXΠXθXθ = X⊤DR .

• When does it have a solution?

• A simple condition is η > | |X⊤DX | |∞ + γ | |X⊤ | |∞ | |DPX | |∞

• Under the assumption that ,  is sufficient.max( | |X | |∞ , | |X⊤ | |∞ ) ≤ 1 η > 2
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• We provide a  simple example where RPBE admits a solution but PBE does not in Appendix 
A.14 in Lim et al., 2024.



Error bound on the solution
Regularized Projected (optimal) Bellman equation

• Simple algebraic inequalities yield

| |Xθ*η − Q* | |∞ ≤
1

1 − γ | |Γη | |∞
| |ΓηQ* − Q* | |∞ .

• As , the above inequality reduces to the conventional error bound for Q-learning with linear 
function approximation in Melo et al., 2008.  

η → 0

• As , we get . η → ∞ θ*η → 0

| |Xθ*η − Q* | |∞ ≤
1

1 − γ | |Γη | |∞
| |ΓηQ* − Q* | |∞ ≤

1
1 − γ | |Γη | |∞

( | |ΓηQ* − ΓQ* | |∞ + | |ΓQ* − Q* | |∞ ) .

• With small , and if the function approximation error is low, the overall error bound is small:η ≈ 0



Regularized Q-learning
Algorithm

2. Set the step-size  and   the behavior policy(αk)∞
k=0

1. Initialize θ0 ∈ ℝh

3. for ,dok = 0,1,…
Sample  and .sk ∼ dμ ak ∼ μ
Sample  and s′￼k ∼ P(sk, ak, ⋅ ) rk+1 = r(sk, ak, s′￼k) .

4. End For

Update θk+1 = θk + αk(x(sk, ak)δk − ηθk)

Theorem 5.2 (Informal) 

 Suppose Assumption 1holds and  satisfies 
condition 1. 

Then, we have  with probability one.

η

θk → θ*η

• Assumption 1: Standard assumptions on Markov chain and the feature 
matrix is non-negative, and the column vectors are orthogonal.

•
Condition 1: η > min γ | |X⊤D | |∞ | |X | |∞ + | |X⊤DX | |∞ , λmax(C)(max

π,sa

γd⊤Pπ(ea ⊗ es)
2d(s, a)

−
2 − γ

2 )
8



Convergence proof
Switched System Analysis

d
dt

θu
t = (−X⊤DX − ηI + γX⊤DPΠXθu

t
X)θu

t ,
d
dt

θl
t = (−X⊤DX − ηI + γX⊤DPΠXθ*η X)θl

t

• Lee et al., 2020 developed an ODE analysis framework for Q-learning based on switched system theory:

• We apply the Borkar-Meyn Theorem which is a tool to prove convergence of stochastic algorithm by its 
corresponding ODE:

• Construct a lower and upper comparison system such that  θu
t ≥ θt ≥ θl

t .

• The system can be viewed as switched affine linear system, of which stability is difficult to analyze.

• The systems can be viewed as switched linear system and linear time-invariant system.

d
dt

θt = (−X⊤DX − ηI + γX⊤DPΠXθt
X)θt + γX⊤DP(ΠXθt

− ΠXθ*η )Xθ*η , θ0 ∈ ℝh .
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Experiments
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•  [Tsitsiklis and Van Roy, 1996] and Baird example [Baird, 2000] is typical example 
where Q-learning diverges.
θ → 2θ

• Regularized Q-learning is convergent and shows fast convergence rate.



Conclusion and Future works

• We have proposed regularized Q-learning which is convergence under the linear function 
approximation scheme and mild assumptions.


• We have analyzed the regularized (projected) optimal Bellman equation.


• As a future work, we can consider neural network approximation case, which is closer to 
practice.
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