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Motivation & Background

Japan: Sakura; China:

Japan: Sakura; China: Peony.

The peony is often considered a national flower of China and symbolizes prosperity, honor,
and beauty. It holds cultural and historical significance, much like the cherry blossom does in
Japan.

Japan: Sakura; Australia; Kangaroo; China:

Japan: Sakura; Australia: Kangaroo; China: Panda.

The giant panda is widely recognized as a symbol of China, representing peace, friendship,
and the country's commitment to wildlife conservation.
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» Observation: Different task concepts are identified from the same words in different prompt.

» Question: Why can an additional demo-pair influence the outcome of ICL greatly?




Motivation & Background

» Observed Multi-Concept Latent Geometric Linearity of LLM.

Existing studies [1-4] suggest the multi-concepts are encoded linearly in the latent representation of LLM.
- Representations within-concepts (topics) have positive inner products
- Representations cross-concepts (topics) exhibit near-orthogonal relationships

- ICA is more suitable than PCA when extracting meaningful concepts

[1] Yamagiwa et al. Discovering universal geometry in embeddings with ICA. EMNLP 2023

[2] Li et al. How Do Transformers Learn Topic Structure: Towards a Mechanistic Understanding. ICML 2023
[3] Park et al. 2023: The linear representation hypothesis and the geometry of large language models. ICML 2024
[4] Jiang et. al. On the origins of linear representations in large language models. ICML 2024

[5] Reizinger et al. Position: Understanding LLMs Requires More Than Statistical Generalization. ICML 2024
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- Representations within-concepts (topics) have positive inner products
- Representations cross-concepts (topics) exhibit near-orthogonal relationships

- ICA is more suitable than PCA when extracting meaningful concepts

-

Essential Question

Whether and how do the observed latent geometry facilitate

transformer in ICL, especially in OOD scenario?

- J

Remark: This question is also raised as a research question Question 5.1.4 in [5], available after our submission.
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» Observed Multi-Concept Latent Geometric Linearity of LLM.

Existing studies [1-4] suggest the multi-concepts are encoded linearly in the latent representation of LLM.
- Representations within-concepts (topics) have positive inner products
- Representations cross-concepts (topics) exhibit near-orthogonal relationships

- ICA is more suitable than PCA when extracting meaningful concepts

» Existing transformer theories suffer from unrealistic settings.

- Prior theories are conducted on unrealistic settings such as linear or ReL.U transformers, MLP-free attention-
only models, QK-combined softmax attention and impractical loss functions like square / hinge loss.

- Due to their technical limitation, they only obtain linear or sub-linear convergence rates.
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Introduction

Grounded in the studies of the LLLM linear concept representation, we conduct theoretical analysis

on a concept-specific sparse coding prompt distribution for ICL bi-classification tasks. Our main

contributions are highlighted as below.

»> We are the first to analyze the realistic setting: soffmax attention + ReLU MLP

transformer, which is trained using the cross-entropy loss via stochastic gradient descent
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Introduction

Grounded in the studies of the LLLM linear concept representation, we conduct theoretical analysis

on a concept-specific sparse coding prompt distribution for ICL bi-classification tasks. Our main

contributions are highlighted as below.

»> We are the first to analyze the realistic setting: soffmax attention + ReLU MLP
transformer, which is trained using the cross-entropy loss via stochastic gradient descent
We are the first to showcase the exponential 0-1 loss convergence over the highly non-
convex training dynamics in ICL theory
We provably show that transformers can perform certain OOD ICL tasks by leveraging
the multi-concept semantic linearity after training, highlighting their innovative

potential for large models.
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Problem & Model Formulation

> Polysemous Word Model. (D,..D,,D,,D;, ., De,)

Define the feature and label dictionaries:
M = [MT?“’I? 7”}2’17,"’/;{171/17"' 7VK2]

Q=[q7,q7, -, 4};1’ ;{170,...0]
satistying within-concepts positive inner product and cross-concepts orthogonal relationships.

There exists 0 <k _x, Ky <1 such that

+ 1, )/2 and the low-level semantic

)/2, d = (a — a3 )/2-

We can naturally define the high-level concept features a := (n
label features by := () — 11y, )/2 Also we define 1 := (4} +

0 < cos{py , py ) < kg, 0 < cos(af ,qy.) < Ky
+
M,
k




Problem & Model Formulation

» Polysemous Word Model. (D,,D,.D.,D;,.Ds, )
Then, the 2, {z, §y are generated from D, , and Gaussian distributions ng 3 Dgy independently.

By reparameterization we define

r:=Mz+E~Dy, y:=Qz+& ~D,

» Concept-specific Prompt Distribution. (Dy)

1
where 7T,:€t = (2K1)_1 denotes the equal chance

D= <7T+7D+ + m, Py )
Z kL R 7 gkar of P, w1 PP, represents the k-th concept-

k,L+1
specific prompt distribution; ys, € [£1] is the

true label of a prompt. Each demo-pair (z}, y}')

( in Py ;. includes either (ui,q) or (py,aq;)
0

with equal chance. Furthermore, VI € [L + 1],
P(2]' (o _1vor) = 1) = K ', indicating an equal
chance of diverse task-irrelevant feature presence.

=1

XLIX1)+1

- . | —




Problem & Model Formulation

» Transformer Model. ¥’ := {W% W% W%!

X aTr .o T @ . . ’
H=E(S) = ( yi y; yi dery ) = (hy,ha, -+ hguery ) € R(dx+dy)x(L+1)

fH; V) =r'or (Wpattn(H; ¥)),

i
attn(H; ¥) = Zwvhms ((WKhl)T WthUCTY) ;

=1

* WL % * *
*Q *)’ WK:( *K *)’ WV:(* W%}) Wo = (x W?(j))y
where W% WEZ ¢ Rixxdx WY ¢ Rimv—dx)xdy WY ¢ Rm*dy_ Here, we set the elements

other than W, W%, W7, and W, to be zero. Besides, we fix WY, tobe L., _q.)xd,,- We sample

r; from a uniform distribution Unif{—1, 1} and fixed during the training process. Based on this

setting, the trainable part we need to consider is actually ¥’ := {W"’ , W% Wg} This problem
remains highly non-convex and challenging.




Problem & Model Formulation

> Stochastic Gradient Descent.

L, (¥) = Ls, (V) == & 3 €(ys, - [ 0)) + 5|3,

’I’LEBt

_ 2
where {(z) = log(1 +exp(—2z)) [|¥'[|% represents W3]z + [WE % + IWEIIE Tt = X779

Initialization Setting. All initial values of W, are sampled from a i.i.d. Gaussian distributions with
mean 0 and variance o%. The initialization of W§ and W7 are diagonal matrices ogll

Algorithm 1 Training algorithm

Input: Training distribution Dg, Test distribution D*, Batch size B, step size n; =
stopping criterion € and total epochs 7'.

_2
A(y+t)°

Initialize model parameters W’ o
fort=0,1,..., T —1do

If L9.1 (W) < ¢ stop else continue.

Randomly sample mini batches B; of size B from Dg.

Ugdate model parameters: ¥/ = ¢/ _ ntvq,/LBt(\I!’(t)).
end for
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Main Result

» Exponential Convergence of 0-1 loss under low-noise condition
Theorem 1. Under Condition 1, for Ve >0, 3 C1,C2 > 0, with probability no less than 1 — 6, for T > T ,

we have

Cor’mM2(y +T)
Kallq|)?((L = Df[u[]* + 1)

L5 (7)) < exp(—

-

Killall?((L=D)]Ju[|*+1 o
» Thus after Te = lllqlléguzm))\l!zu” T )log(%) iterations, we have

L3N (™) <e

> Importantly, 7' is independent of € and does not affect the convergence rate as £ — 0.




Main Result

> Out-of-Distribution-Generalization.

Proposition 1. Under Condition 1, for ¥V £ > 0, The learned model satisfies L%gl(\ll(T*)) < ¢ for

T* = Te, where the D7 can enjoy the following distribution shifts.

» The prompt length can be any positive integer.

> D7 can enjoy any shift, with each prompt sharing > 1 co-concept, and equal chance to be *1.

» D, x D, canenjoy great shift. The new M* and Q* satisfying that

* k
pE = epEby, o = gEdp Ve = v

2

The a, by, ., 1., VL, are any vectors in the conic hulls of
I
{ak}k 17{bk}k 17{ k}k; 1?{ }k: 17{:‘:Vk}k:22

respectively. [[bj[| > [lai[l = ©([ul), ll4;] > | {I = ©(lall)and ¥z, = O(||ull)




Main Result

> Proof Strategy: Convergence of Expectation - Exponential Variance Reduction [1]

In a big picture, we extend the standard techniques in SGD [1] to our model under strong low-noise condition

(1) The expected estimator would fastly converge; (i1) The variance can connverge exponentially by the property of tails

. dx+d
query - R( xtdy)

Wy Rmx(derdy)  H: R (datdy)x(L+1) W : R (datdy) h

W : R™*™
0 ; R™ R
* x x T
. - 1 W
r ReLU(|« Z " softmax h +)1)

=1 Y
@ Wy,
5o xi ‘ e~ ‘
i"row of W, : W, € R ﬂ L

Orthogonal
Decomposition Components

+
K T T | N
Wou =D (@0, H E + Boy. H‘(1;|‘2)4r~~~ . Idempotent Decomposition
Cs s h A
s=1 ! b A\ K, b b T
{ W= Y00 Zﬂ“ o+
pa

y e __ H \‘
Wo(iy_)qk = Qg kT e" Bk ay, @

(Wﬁﬁ';‘:e) (WZIJ’Z) = 0Q,s " XK s + ﬂQ,s . ﬁK,s

Wy : Rk (dx+dy)

My

With a good initialization and a symmetric low-noise prompt distribution, we can decompose the expected (over the stochastic

batches) NN matrices along concept and semantic directions.

1 6 [1] Nitanda and Suzuki. Stochastic gradient descentwith exponential convergence rates of expected classification errors. In AISTATS, 2019.



Contents

» Experiments

» Conclusion



Experiments

In-Distribution Test Distribution.

Training and Test Loss Evolution of Attention Weights 0 Learning Progress of Attention Learning Progress of MLP

' 74 = a5 (0)
C — a% (1)
77 | = 1B5] (0)

— ag*ax (0) — B4l (1)

m— g *ax (1) = Complement Coeff Max
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= test attn weights (0)
= test attn weights (1)
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Figure 2: Learning dynamics: (i) training and test loss; (ii) correct attention weight; (iii) maximum
values of ag s - ks, Bo.s * Br s, maximum values of the complement products 7¢ , - T, OF
P02 - PK.2, and maximum values of product-with-noise (W%Em)T O&=; (iv) maximum values
of o, , .k and |Bo,, , k|, maximum values of the complement coefficients po,, ., . and maximum
values of product-with-noise W’é(i ,)fy. The parameter settings are: L = 4, K; = 2, K = 104,
Nest = 5000, dy = dy = 1000, m = 50, |u|| = ||q|| = 10, Vk € [Ki], (g5, )/ |ull? =
(q,‘:, q; )/lldll? = 0.5, g = 0.1, 01 = 0.01, o¢ = 0.01, A = 0.002, B = 16, v = 10000, and the
total training epochs is 100.




OOD Test Distribution.
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(a) OOD Scenario 1(i): L™ = 5 during testing. (b) OOD Scenario 1(ii): L™ = 2 during testing.
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(d) OOD Scenario 3: Shift the data as uf’:
and ué“* = a2 £ by during testing.

(¢c) OOD Scenario 2: 0.8 fraction for the first and 0.2

a1 + bQ
fraction for the second concept during testing.

Figure 3: Learning dynamic in three OOD scenarios. The training settings and plotting methods are
identical to those used in Figure 2| The consistency of the results validates Proposition 1.
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Conclusion

» Advancing the Theory of Transformers and ICL.
We provide a fine-grained analysis of the learning dynamics for a three-layer transformer model, comprising an
softmax attention followed by a ReLLU-activated feedforward network. We showcase the asymptotic properties

governing the coupled learning of the attention and MLP layers.

» Exponential Convergence of 0-1 Loss.
Despite the highly non-convex nature of the problem, we are the first to prove an exponential convergence rate for the

0-1 loss utilizing techniques in stochastic optimization literature.

» Connecting Multi-Concept Semantics to Efficient ICL.

We provably show how the multi-concept encoded linear geometry of representations can enable transformer to

conduct certain OOD ICL tasks.
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