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Gaussian processes (GPs) are non-parametric regression models that are expressive
data efficient, and allow for well-calibrated uncertainty estimates.

Standard GPs assume homoskedastic Gaussian noise,
applications are subject to non-Gaussian corruptions.

while many

)

real-world

In this work, we propose and study a GP model that achieves robustness against sparse
outliers by Iinferring data-point-specific noise levels with a sequential selection

procedure maximizing the log marginal likelihood that we refer to as Relevance Pursuit.
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