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Challenging privacy auditing settings

Consider a data contributor (e.g., hospital, bank, consumer) co-training a model with other participants.

Or a foundation model, trained on all the data in the world.
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Differential Privacy (DP) quantifies Privacy Loss

Hypothesis test definition of DP [Dong et al. 2019]:

We can frame privacy as a hypothesis test between #Z, : x € D and
Z | . x & D (i.e. whether x is in training data D).

This hypothesis test is a

DP implies a bound on the power of such hypothesis tests: any test based on
an €-DP has TPR < e°FPR.



Privacy measurement with MIAs

What does it mean for a privacy auditor?

For each datapoint x:
Train f with or without x;

Run a MIA to guess if x was In the training set or not.

If TPR < e“FPR, then fis not consistent with an &-DP algorithm.



Privacy measurement with MIAs

What does it mean for a privacy auditor?

Needs to retrain model f;

Needs datapoints removed from the training set, so we're
changing the model;

It’s typical to “poison” the model to make the algorithm audit
more efficient: not what we want here!



PANORAMIA:

Privacy Audits without Model Retraining




PANORAMIA overview

Remember that we want to




PANORAMIA overview

We train to generate non-member data using a subset of
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PANORAMIA overview

Using generated non-members, we train a Membership Inference Attack and
evaluate It on a large test set.
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PANORAMIA overview

Using generated non-members, we train a Membership Inference Attack and
evaluate It on a large test set.
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PANORAMIA overview

Using generated non-member and member data, we train a Membership
Inference Attack and evaluate it on a large test set.
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PANORAMIA overview

We need to compare our MIA results to that of a baseline model (b) that does
not have access to f.
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Quantifying privacy leakage with PANORAMIA

We adapt O(1) “averaging over data” results (Steinke et al. 2023) to define
PANORAMIA auditing game:

|
§ ~ Bernoulli(z)m, s. € 10,1},

x, = (1 — Si)xl.ge” +sx" Vie {1,...,m}, putx; € D,

1”71 ?

Predict membership T; € R™, Vi.



Quantifying privacy leakage with PANORAMIA

We measure the generator quality (c) using the baseline model b:

For all ¢ > 0, we say that a generative model & is c-close for data distribution

D if:

Vx e X, e ‘Pgylx] < Pelx]



Quantifying privacy leakage with PANORAMIA

The baseline gives us a test for ¢ which we can get a lower-bound ¢,

LS,X’Tb[ZY;b‘SiZV‘Tb=tb]< L Ith S,>V]
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Quantifying privacy leakage with PANORAMIA

MIA gives us a test for leakage through both f and the difference between &
and & which we can get a lower-bound{c + ¢}

LS,X,TC,[in’-SinlT‘Zzt“]< L [Ztl.“-Si’Zv]
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Quantifying privacy leakage with PANORAMIA

We use &€ = {¢ + ¢}, — ¢, as an estimate of privacy leakage.

“The generator & could be c-good, and if it is, then fis no better than &-DP as
far as its leakage of D)., is concerned.”



Empirical results: ResNet101 on CIFAR-10
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Empirical results: DP models on CIFAR-10
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Conclusion

We can audit ML models and specific subsets of their training set

Empirically, results are close to those of state-of-the art methods (that do
require changing the training data and/or retraining the model).

Full paper: https://arxiv.org/abs/2402.09477

Code repository: https://github.com/ubc-systopia/panoramia-privacy-
measurement
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