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« Length Generalization (LG)

e “Train Short, Test Long.” =~ Out-of-Distribution Generalization
e Proxy to study LLM’s algorithmic understanding capability

e In terms of LG, Yes and No.

e Can: Sorting, Mode, Counting, Copy/Reverse w/o duplicates, ...
« Can’t: Addition, Multiplication, Copy/Reverse with duplicates, Parity, ...
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« Length Generalization (LG)

e “Train Short, Test Long.” =~ Out-of-Distribution Generalization
e Proxy to study LLM’s algorithmic understanding capability

e In terms of LG, Yes and No.

e Can: Sorting, Mode, Counting, Copy/Reverse w/o duplicates, ...
« Can’t: Addition, Multiplication, Copy/Reverse with duplicates, Parity, ...

Can we inject the known structure of a task into a decoder-only
Transformer so that it can automatically length-generalize!



Method: Position Coupling

e Main Contribution:

e Trained Transformers on problem lengths 1-30 for several arithmetic &
algorithmic tasks (Addition, Multiplication, Copy/Reverse with duplicates,...).

« Achieved a robust and near-perfect generalization to problem length 200:
~ 6.67 % length extrapolation!
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Method: Position Coupling

e Main Contribution:

e Trained Transformers on problem lengths 1-30 for several arithmetic &
algorithmic tasks (Addition, Multiplication, Copy/Reverse with duplicates,...).

« Achieved a robust and near-perfect generalization to problem length 200:
~ 6.67 % length extrapolation!

 Established on top of learned APE (e.g., GPT3)
e ... with a task-specific position ID assighment rule.

e Suppose we know/have:

e A task we want a decoder-only Transformer to solve by NTP
e Structure between token positions (regardless of sequence length)
« A proper input formatting technique (e.g., reversing, zero-padding)
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Method: Position Coupling (Reverse task)

 Position ID assignment rule for each input sequence:

- IS - EEIEE -
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Method: Position Coupling (Reverse task)

 Position ID assignment rule for each input sequence:
1)  Group input tokens into “chunks” of (consecutive) tokens
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Method: Position Coupling (Reverse task)

 Position ID assignment rule for each input sequence:

1)  Group input tokens into “chunks” of (consecutive) tokens

2) Assign the same position ID to the tokens at the same “significance”
« Every token in each chunk is of a unique significance
« We assign consecutive position IDs for consecutive tokens in each chunk
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Method: Position Coupling (Reverse task)

 Position ID assignment rule for each input sequence:

1)  Group input tokens into “chunks” of (consecutive) tokens

2) Assign the same position ID to the tokens at the same “significance”
« Every token in each chunk is of a unique significance
« We assign consecutive position IDs for consecutive tokens in each chunk

3) At training time, randomly shift every position ID by a certain offset
» Except for special tokens (BOS, EQOS, PAD): fixed by ‘0’
« Hyperparameter: Maximum possible position ID (max_pos)

4) Apply Learned APE! @&
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Method: Position Coupling (Addition task)

 Position ID assignment rule for each input sequence:

Zero padding Re\/ersed output
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Method: Position Coupling (Addition task)

 Position ID assignment rule for each input sequence:

1)  Group input tokens into “chunks” of (consecutive) tokens

2) Assign the same position ID to the tokens at the same “significance”
« Every token in each chunk is of a unique significance
« We assign consecutive position IDs for consecutive tokens in each chunk

3) At training time, randomly shift every position ID by a certain offset

» Except for special tokens (BOS, EQOS, PAD): fixed by ‘0’
« Hyperparameter: Maximum possible position ID (max_pos)

4) Apply Learned APE! @&

Zero-padding ~—___ Reversed output
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o Takeaway:

 If you have any information about the task structure, use it!
|t will lead a model to have a better inductive bias.
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Theoretical Analyses

e Depth-1 Transformer + Position Coupling is sufficient to solve
exponentially long additions entirely:
4
Theorem 5.1. There exists a 1-layer 2-head decoder-only Transformer
with Position Coupling that solves the addition task. Here, the operand
length is at most 29(4) where d is the embedding dimension.

~

\_

e The proof is constructive.

)

« In our construction, if d = 512, the maximum solvable length is ~ 2.26x1074.
« Obviously extends to larger architectures with more layers & attention heads.



Theoretical Analyses

e Depth-1 Transformer + Position Coupling is sufficient to solve
exponentially long additions entirely:
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Theorem 5.1. There exists a 1-layer 2-head decoder-only Transformer
with Position Coupling that solves the addition task. Here, the operand

length is at most 29(4) where d is the embedding dimension.
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e The proof is constructive.

« In our construction, if d = 512, the maximum solvable length is ~ 2.26x1074.

« Obviously extends to larger architectures with more layers & attention heads.

e |In contrast, we prove that any depth-1 decoder-only Transformer without positional
information (i.e., NOPE) cannot solve permutation-sensitive tasks (e.g., addition,
multiplication, copy...) (Proposition 5.2.)
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Check out our camera-ready version = including:

« A striking similarity between our theoretical construction and actual trained Transformers

« Ablations on trained lengths, architectures, input formats, and more

« Results on more tasks, e.g., “Nx2” Multiplication, two-dimensional task (“minesweeper generator”)
» Comparison & Combination with Rotary PE

0) GltHub

github.com/HanseulJo/position-coupling
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