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Introduction: Agnostic learning of a concept class F

Given: samples (x;,y;) € R” x {£1}.

Goal: Find a classifier f such that
P[f(x) # y] < opt + e,

where opt = min¢cz P[f(x) # y], using as
few samples and time as possible.
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Introduction: Agnostic learning of a concept class F

Given: samples (x;,y;) € R” x {£1}.

Goal: Find a classifier f such that

P[f(x) # y] < opt +¢,

where opt = min¢cz P[f(x) # y], using as
few samples and time as possible.

Issue: Generally computationally hard
— Add distributional assumption that

xj ~ D for some (known) D.

For this work: Assume samples come from

the standard Gaussian.
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fopt = arg %lgp[f(x) 7é y]

opt:%

P[f(2) #y] = 5
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Testable learning — Definition
Question: How to verify this assumption?

Checking the distributional assumption directly is computationally hard or
impossible.
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Testable learning — Definition
Question: How to verify this assumption?

Checking the distributional assumption directly is computationally hard or
impossible.

Recently introduced model of testable learning [RV23]:

© (Tester) Check computationally tractable relaxation of distributional
assumption. Accept or reject the samples.

@ (Learner) If we accept the sample, run learning algorithm.

[RV23]: Rubinfeld and Vasilyan. “Testing distributional assumptions of learning algorithms” (2023)
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Testable learning — Definition

Question: How to verify this assumption?

Checking the distributional assumption directly is computationally hard or
impossible.
Recently introduced model of testable learning [RV23]:

© (Tester) Check computationally tractable relaxation of distributional
assumption. Accept or reject the samples.

@ (Learner) If we accept the sample, run learning algorithm.
Conditions:
o (Completeness) Samples from the target distribution are accepted.

@ (Soundness) Whenever tester accepts, learner needs to output a good
hypothesis.

[RV23]: Rubinfeld and Vasilyan. “Testing distributional assumptions of learning algorithms” (2023)

Slot, Tiegel, Wiedmer (ETH Zurich) Testably learning PTFs 3/5



Testable learning — Results

Concept class | Agnostic learning Testable learning
O(1/¢2 O(1/¢2
Halfspaces nOU/<) nOU/<)
[KKMS08; DKN10] [RV23; GKK23]

Degree-d PTFs

Convex sets

[KKMS08]: Kalai, Klivans, Mansour, and Servedio. “Agnostically learning halfspaces” (2008)

[DKN10]: Diakonikolas, Kane, and Nelson. “Bounded independence fools degree-2 threshold functions” (2010)

[RV23]: Rubinfeld and Vasilyan. “Testing distributional assumptions of learning algorithms” (2023)

[GKK23]: Gollakota, Klivans, and Kothari.“A moment-matching approach to testable learning and a new characterization of
Rademacher complexity” (2023)
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Testable learning — Results

Concept class | Agnostic learning Testable learning
Halfspaces n00/) n00/)
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[Kanl1b] Our result
Convex sets 20(VA/eY 29(7)
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Testable learning — Our result

Theorem (Main result)
Degree-d PTFs can be testably learned with respect to the standard

0 o - o Oy (6_4d'7d)
Gaussian in time and sample complexity n }

Technique: Use “fooling” technique from [GKK23]; proof of this condition
is based on [Kanlla].

Open question: Can the dependence on d in the above result be improved
or can lower bounds be shown?

[GKK23]: Gollakota, Klivans, and Kothari.“A moment-matching approach to testable learning and a new characterization of
Rademacher complexity” (2023)
[Kanl1a]: Kane."k-independent Gaussians fool polynomial threshold functions” (2011)
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