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Motivation

• Classical ML: learn a linear predictor on top of a feature map.

• Modern ML: jointly learn a feature map and a linear predictor.

• By putting the burden of picking a feature map on the model and
data, we should expect that we need more samples to learn.

But just how many more samples?



Setup

• We evaluate the quality of a predictor f : X → R through its risk

R(f ) := E[ℓ(f (X ),Y )], Rn(f ) :=
1

n

n∑
i=1

ℓ(f (Xi ),Yi ).

• We consider classes of predictors induced by arbitrary collections
of feature maps (ϕt)t∈T , ϕt : X → Rd ,

F :=
⋃
t∈T

Ft , Ft :=
{
x 7→ ⟨w , ϕt(x)⟩ | w ∈ Rd

}
.

• Goal is to compare the excess risk of the following procedures

ERM procedure

f̂n,ERM ∈ argmin
f ∈F

Rn(f ),

Oracle procedure

f̂n,oracle ∈ argmin
f ∈Ft∗

Rn(f ).

E(f̂ ) := R(f̂ )−min
f ∈F

R(f ), t∗ := argmin
t∈T

min
f ∈Ft

R(f ).
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Background

• Conventional wisdom:

excess risk of ERM ∝ size of model class.

• Since

1. f̂ERM corresponds to ERM on the large class F ,
2. f̂oracle corresponds to ERM on the small class Ft∗ ,

this suggests that
E(f̂n,ERM)

E(f̂n,oracle)
≫ 1.



Asymptotic result

• Under mild assumptions, we prove that

lim
n→∞

P

(
1 ≤

E(f̂n,ERM)

E(f̂n,oracle)
≤

)
= 1.

• Asymptotically, the difficulty of learning with ERM over the large
class of predictors

F :=
⋃
t∈T

Ft ,

is, up to a factor of two, the same as that of learning with ERM
over the linear class of predictors

Ft∗ :=
{
x 7→ ⟨w , ϕt∗(x)⟩ | w ∈ Rd

}
!
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Asymptotic result: on the assumption

How mild is the assumption?

• Weak Law of large numbers (WLLN):

∀ε > 0 lim
n→∞

P

(∣∣∣∣∣1n
n∑

i=1

Xi − E[X ]

∣∣∣∣∣ > ε

)
= 0.

• A collection of random variables (Xt)t∈T satisfies the UWLLN if

∀ε > 0 lim
n→∞

P

(
sup
t∈T

∣∣∣∣∣1n
n∑

i=1

Xt,i − E[Xt ]

∣∣∣∣∣ > ε

)
= 0.

• The assumption in our result is that certain collections of random
variables arising from the problem satisfy the UWLLN. This
always holds when T is finite. In general, this is an assumption on
the size of T , appropriately measured.



Nonasymptotic result

What happens non-asymptotically?

• There is a sequence of subsets (Sn)
∞
n=1 of T such that

1. S1 ⊃ S2 ⊃ S3 . . . ,
2.
⋂∞

n=1 Sn = {t∗},

E(f̂n,ERM) ≲ (size of Sn) ·
(
sup
s∈Sn

E(f̂s)
)

where f̂s is an ERM over the class Fs . Note that as n → ∞, we
recover the asymptotic result, up to an absolute constant.

• The subsets Sn correspond to the sublevel sets, for εn = O(1/n),

Sn = {t ∈ T | ∆(t) ≤ εn},

of the function

∆(t) := min
f ∈Ft

R(f )− min
f ∈Ft∗

R(f ),

that measures the suboptimality of the feature map indexed by t.
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Main Takeaways

• Asymptotically and under mild assumptions, learning a feature
map in addition to learning a linear predictor with ERM induces a
negligible sample complexity overhead.

• Non-asymptotically, this overhead is controlled by the size of the
set of feature maps that are εn as good as the best feature map,
for εn = O(1/n).

• Future directions: can we verify that the assumptions hold for
model classes and distributions of practical interest?

Thank you for your attention!
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