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Motivation

® (lassical ML: learn a linear predictor on top of a feature map.
® Modern ML: jointly learn a feature map and a linear predictor.

® By putting the burden of picking a feature map on the model and
data, we should expect that we need more samples to learn.

But just how many more samples?
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® Goal is to compare the excess risk of the following procedures

ERM procedure Oracle procedure
fc,LERM € argmin R,(f), f,horade € argmin R,(f).
feF FEFe,

E(F) = R(f) —minR(f), t.:= in min R(f).
(f) = R(f) — min R(f), argmin min (f)



Background

e Conventional wisdom:

excess risk of ERM  size of model class.

® Since

1. fERM corresponds to ERM on the large class F,
2. foracle corresponds to ERM on the small class F;,,

this suggests that

A

E(fq
7(A ERM) > 1.

g( fn,oracle)
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Asymptotic result

® Under mild assumptions, we prove that

lim P(lgg(f”f"’“”)g):l.

n—o00
n,oracle

® Asymptotically, the difficulty of learning with ERM over the large
class of predictors
Fi=JF

teT

is, up to a factor of two, the same as that of learning with ERM
over the linear class of predictors

Foo = {x = (w.60.(0) | w e B



Asymptotic result: on the assumption

How mild is the assumption?

>5>:O.

¢ A collection of random variables (X;):c satisfies the UWLLN if

)—o.

® The assumption in our result is that certain collections of random
variables arising from the problem satisfy the UWLLN. This
always holds when 7 is finite. In general, this is an assumption on
the size of T, appropriately measured.

e Weak Law of large numbers (WLLN):

: 1<
Ve>0 lim P<|nZX,—E[X]

n—o00 ¢
i=1

Ve>0 lim P<sup th, — E[X{]| >

n—oo \ter|N
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® The subsets S, correspond to the sublevel sets, for ¢, = O(1/n),
Sp={teT|A(t) <en},
of the function

A(t) == frrég_]t R(f) — frg}_rt\* R(f),

that measures the suboptimality of the feature map indexed by t.
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Thank you for your attention!



