
Yuezhu (Ruby) Xu *

Sivaranjani (Siva) Seetharaman 

School of  Industrial Engineering

          xu1732@purdue.edu

ECLipsE: Efficient Compositional Lipschitz 
Constant Estimation for Deep Neural Networks

https://gfycat.com/

𝑏1, … ,  𝑏𝑙−1 , 𝑏𝑙

W1 𝑊𝑙



▪ Lipschitz constant – measure of  robustness

▪ NP-Hard to compute exactly

▪ Upper bound involves solving a large matrix SDP 
(SOTA: LipSDP methods)

▪ Recast as small layer-by-layer sub-problems

ECLipsE: Efficient Compositional Lipschitz Constant 
Estimation for Deep Neural Networks
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Messenger matrix – computed layer-by-layer
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ECLipsE-Fast (closed-form solution):
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Lipschitz Estimate
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Application: Compositional Robustness 
Certificates for Neural Networks

▪ Recast as small layer-by-layer sub-problems

▪ ECLipsE has comparable estimates with LipSDP-
Neuron; ECLipsE-Fast has comparable estimates 
with LipSDP-Layer

▪ Both algorithms are much faster 

▪ Computational time grows linearly as depth or 
width increases while computational time for 
LipSDP grows exponentially

4

Key Outcome: 

More than 10000x faster than state of  the 

art algorithms, with comparably tight bounds!

80 Neurons

20 Layers



Application: Compositional Robustness 
Certificates for Neural Networks
▪ LipSDP enhances the efficiency by splitting 

▪ Experiment on even deeper neural networks

▪ ECLipsE-Fast is the most efficient method 
throughout all cases

▪ ECLipsE-Fast is more accurate compared to 
LipSDP-Layer no matter the splitting.

▪ ECLipsE has best tightness throughout all cases

▪ ECLipsE is faster than LipSDP-Neuron no matter 
the split
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Comparison with LipSDP Splitting (100 layers)

Key Outcome: 

Our algorithms outperforms LipSDP with splitting 

on both accuracy and efficiency!
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