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lllustration of Lipschitz Constant with A x and A f

» Lipschitz constant — measure of robustness

NP-Hard to compute exactly

Upper bound involves solving a large matrix SDP
(SOTA: LipSDP methods)

Recast as small layer-by-layer sub-problems
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Lipschitz constant — measure of robustness

NP-Hard to compute exactly

Upper bound involves solving a large matrix SDP
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Messenger matrix — computed layer-by-layer
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G ECLipsE (small SDPs): A, is the solution of:
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a ECLipsE-Fast (closed-form solution):
2

Omax (Wi (M)~ WT)

Ai=

Lipschitz Estimate

L= \/Umax(WlTWl(Ml—ﬂ_l)




Application: Compositional Robustness

Certificates for Neural Networks

80 Neurons

" Recast as small layer-by-layer sub-problems 03 ‘v‘\_‘__\‘\‘\
» ECLipsE has comparable estimates with LipSDP- o7} ‘\\\‘
Neuron; ECLipsE-Fast has comparable estimates e

Normalized Lipschitz Estimates
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with LipSDP-Layer e
» Both algorithms are much faster - oot

LipSDP-neuron
== == | ipSDP-layer
== == CPLip

" Computational time grows linearly as depth or
width increases while computational time for 0 S R
LipSDP grows exponentially
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Morte than 10000x faster than state of the
art algorithms, with comparably tight bounds!

o
£
t
\
|

]

|

e
w
T

ECLipsE
ECLipsE-Fast
LipSDP-neuron
== == | ipSDP-layer
= = CPLip

Normalized Lipschitz Estimates
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Application: Compositional Robustness
Certificates tor Neural Networks

" LipSDP enhances the efficiency by splitting Comparison with LipSDP Splitting (100 layers)
* Experiment on even deeper neural networks o5
= ECLipsE-Fast is the most efficient method — ®  80neurons
09 ! ® 100 neurons
throughout all cases ¢ 120 neurons
. ) ® A 140 neurons
» ECLipsE-Fast is more accurate compared to 080 A v’ v 160 neurons
LipSDP-Layer no matter the splitting, = ie ® " A ¢ ol ———
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» ECLipsE has best tightness throughout all cases I ®  reormery)
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= BECLipsE is faster than LipSDP-Neuron no matter = e 0
the Spht % 0.7 F v — LipSDP-layer (10)
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Our algorithms outperforms LipSDP with splitting ®
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