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Contributions

This is the first work to employ heterogeneous observational datasets to
address hidden confounding in debiased recommendations, wherein some data
is subject to hidden confounding while the remaining is not.
In this study, we relax the reliance on expensive randomized controlled trial
(RCT) data in previous data fusion methods.
We propose a meta‐learning based debiasing method called MetaDebias to
explicitly estimate the oracle error imputation and hidden confounding bias,
employing bi‐level optimization for model training.
We conduct extensive experiments on three public datasets, and our method
achieves state‐of‐the‐art performance in the presence of hidden confounding,
regardless of the availability of RCT data.

Preliminaries

Unit: a user‐item pair (u, i).
Target population: the set of all user‐item pairs D = {(u, i) | u ∈ U , i ∈ I}.
Feature: xu,i, the observed feature of user u and item i.
Treatment: ou,i ∈ {0, 1} is the exposure indicator of (u, i).
Outcome: ru,i, the feedback of user‐item pair (u, i).
Data Source Indicator: gu,i ∈ {0, 1} indicates whether hidden confounding exists.

Motivation

Existing methods for mitigating hidden confounding are challenging to be
applied in real‐world scenarios, as they either rely on strong assumptions on
hidden confounding strength or depend on the costly RCT data.

Sensitivity Analysis

Sensitivity analysis based approach assumes the true propensity pu,i is near and
can be bounded by the estimated propensity p̂u,i, i.e., given bound Γ ≥ 1

1
Γ

≤ (1 − p̂u,i) pu,i

p̂u,i (1 − pu,i)
≤ Γ.

However, above strong assumption on hidden confounding strength is hard to
be satisfied in real world, and such method fails when the assumption is violated.

Model Calibration with RCT data

Recent works propose to leverage a few unbiased RCT data for model
calibration, where biased propensity and imputation models can be corrected
using such unbiased loss, for instance, with the help of additive residual models
or multiplicative reweighting models.
However, collecting RCT data requires users to rate items randomly, which
indicates the acquisition cost of RCT data is prohibitively high, posing challenges
to the practical implementation of such methods in real‐world settings�

Proposed Method

Key Idea

We propose to explicitly estimate the prediction error eu,i = L(r̂u,i, ru,i) on all
user‐item pairs D and hidden confounding bias, where r̂u,i = f (xu,i; θ) is the
prediction model with parameter θ, and L(·, ·) is a loss function.
The goal is to accurately estimate the oracle error imputation ED [eu,i | xu,i].

Propensity Score and Naive Imputation

We define the identifiable propensity score π(x, g) to model the two types of
missing mechanisms for both absence and presence of hidden confounding:

π(x, g) = P (ou,i = 1 | xu,i = x, gu,i = g) .

We define the naive error imputation m(x, g) on target population D:

m(x, g) = E[ou,i · eu,i | xu,i = x, gu,i = g].

Estimation of Oracle Error Imputation

Based on the propensity and naive imputation, we have:

m(x, g) = {E [eu,i | xu,i = x] + (1 − g)η(x)} · π(x, g),

where η(x) = E [eu,i | xu,i = x, gu,i = 0, ou,i = 1] − E [eu,i | xu,i = x] is the bias
introduced by hidden confounding.
Further incorporating more information, we can achieve a robust estimation:

ou,i · eu,i − m(x, g) = {E [eu,i | xu,i = x] + (1 − g)η(x)} · {ou,i − π(x, g)} + ξ,

where ξ = ou,i · {eu,i − {E[eu,i | xu,i = x] + (1 − g)η(x)}} with E[ξ | x, g] = 0 can be
regarded as a noise due to its zero‐mean property.

Experiments

Table 1. Recommendation performances in terms of AUC, Recall@5 (R@5),
NDCG@5 (N@5) on Coat and Yahoo! R3.

Coat Yahoo! R3
Method AUC R@5 N@5 AUC R@5 N@5
Naive 0.698 0.478 0.444 0.705 0.638 0.489
IPS 0.717 0.483 0.446 0.699 0.642 0.492
DR 0.725 0.485 0.448 0.709 0.643 0.498
Stable‐DR 0.734 0.486 0.452 0.715 0.656 0.515
TDR 0.736 0.492 0.458 0.717 0.669 0.525
ESCM2‐IPS 0.730 0.484 0.451 0.713 0.666 0.520
ESCM2‐DR 0.737 0.492 0.458 0.715 0.670 0.521
BRD‐IPS 0.733 0.490 0.462 0.712 0.659 0.515
BRD‐DR 0.739 0.494 0.464 0.714 0.663 0.516
KD‐Label 0.735 0.488 0.461 0.712 0.664 0.517
AutoDebias 0.736 0.501 0.465 0.710 0.667 0.520
Bal‐IPS 0.733 0.486 0.462 0.708 0.665 0.515
Bal‐DR 0.735 0.490 0.464 0.708 0.668 0.517
Res‐IPS 0.738 0.494 0.465 0.718 0.675 0.534
Res‐DR 0.740 0.498 0.467 0.720 0.678 0.538
MetaDebias(ours) 0.746 0.510 0.473 0.722 0.688 0.544
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Figure 1. Effects of varying RCT training set size on AUC on three datasets.


