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Data Heterogeneity in FL
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Abstract

In federated learning, a strong global model is collaboratively leamed by aggre-
gating clients’ locally trained models. Although this precludes the need to access
clients’ data directly, the global model’s convergence often suffers from data hetero-
geneity. This study starts from an analogy to continual learning and suggests that
forgetting could be the bottleneck of federated leaming. We observe that the global
model forgets the knowledge from previous rounds, and the local training induces
forgetting the knowledge outside of the local distribution. Based on our findings,
we hypothesize that tackling down forgetting will relieve the data heterogeneity
problem. To this end, we propose a novel and effective algorithm, Federated
Not-True Distillation (FedNTD), which preserves the global perspective on locally
available data only for the not-true classes. In the experiments, FedNTD shows
state-of-the-art performance on various setups without compromising data privacy
or incurring additional communication costs'.
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Abstract

Federated learning enables multiple parties to collab-
oratively train a machine learning model without commu-
nicating their local data. A key challenge in federated
learning is to handle the heterogeneity of local data dis-
tribution across parties. Although many studies have been
proposed to address this challenge, we find that they fail
to achieve high performance in image datasets with deep
learning models. In this paper, we propose MOON: model-
contrastive federated learning. MOON is a simple and
effective federated learning framework. The key idea of
MOON is to utilize the similarity between model represen-
tations to correct the local training of individual parties,
i.e., conducting contrastive learning in model-level. QOur
extensive experiments show that MOON significantly out-
performs the other state-of-the-art federated learning algo-
rithms on various image classification tasks.
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A key challenge in federated learning is the hetero-
geneity of data distribution on different parties [')]. The
data can be non-identically distributed among the parties in
many real-world applications, which can degrade the per-
formance of federated learning [, °°, ““]. When each
party updates its local model, its local objective may be
far from the global objective. Thus, the averaged global
model is away from the global optima. There have been
some studies trying to address the non-IID issue in the lo-
cal training phase ['°, 2”]. FedProx ['"] directly limits
the local updates by £5-norm distance, while SCAFFOLD
[77] corrects the local updates via variance reduction [ "].
However, as we show in the experiments (see Section 4),
these approaches fail to achieve good performance on im-
age datasets with deep learning models, which can be as
bad as FedAvg.

In this work, we address the non-IID issue from a novel
perspective based on an intuitive observation: the global
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Knowledge Distillation in FL

FL with KD in a benign setting
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Impact of Data Heterogeneity
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Attack Amplification

FL with KD in a malicious setting
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Attack Amplification
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Our Solution: HYDRA-FL
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Quantitative Analysis

Table 1: Test accuracy for three techniques on three datasets. In the no-attack setting, (7 |) shows
comparison to FedAvg. In the attack setting, we use bold if our technique outperforms FedNTD.

CIFAR10
Dataset MNIST =005 I =01 I =05 CIFAR100
Techniques no attack | attack || no attack | attack || no attack | attack || no attack | attack || no attack | attack
Fedavg 92.12 74.48 44.69 31.27 54.67 35.67 70.57 48.27 26.17 12.92
FedNTD 93.03 58.09 46.94 21.72 56.95 32.61 71.79 52.51 29.1 13.92
HYDRA-FL(Ours) 92.69 76.67 46.92 25.15 57.12 34.25 71.22 52.57 28.9 14.33

Table 2: Test accuracy for three techniques on three datasets. In the no-attack setting, (7 |) shows
comparison to FedAvg. In the attack setting, we use bold if our technique outperforms MOON.

CIFAR10

Dataset MNIST =01 H =05 || =5 CIFAR100
Methods no attack | attack || no attack | attack || no attack | attack || no attack | attack || no attack | attack
Fedavg 88.02 77.55 57.76 40.9 63.14 60.2 71.19 68.38 28.36 24.21
MOON 91.13 72.32 58.8 39.9 63.34 57.17 70.95] 67 29.34 23.81
HYDRA-FL(Ours) 92.04 76.65 60.1 43.6 63.32 59.93 70.55] 68.4 29.48 25.18
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Qualitative Analysis
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