On the Optimality of Dilated Entropy and Lower Bounds for Online Learning in Extensive-Form Games

Main question

Distance-generating functions provide generalized notions of distances
Constrained optimization require a DGF to move appropriately in the feasible set

What is the optimal DGF for extensive-form games?
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Problem Setting

Online learning on sequence-form strategy space O with full-information feedback:

" In each round, the agent picks x; € O.
* They observe the adversarial reward vector w; and the reward (x;, w;) € |[—1, 1].

Key Structural Results

[Lemma 4.4] The dual norm of any feasible reward vector w satisfies ||w||# . < 1.

[Lemma 5.1] DilEnt is 1-strongly convex with respect to the treeplex ¢i-norm: || - [|5., ) = I - [15,1-

[Lemma 5.2] The diameter of the strategy space is upper bounded as max,, D, (2., x1) < In|V)|.

Goal: Minimize the cumulative regret:

Key results T Main Results on Regret Upper Bounds

Regret(1') := max Xy — X¢, Wi). , , , , , .
gret(T) X.€Q Z< b W) [Theorem 5.4] Running OMD with DilEnt during the proximal steps achieves a regret bound of

t=1

= Developed a new analysis for OMD based on the diameter/convexity ratio results of the DilEnt DGF.

Regret(T) < +/2In |[V|VT,

= Established a matching regret lower bound, confirming the implied optimality of DilEnt. . .
where [V| := QN {0, 1}* is the number of pure strategies.

Proximal Method
= Achieved a new state-of-the-art convergence rate for Clairvoyant OMD to CCE.

Proximal step generalizes the notion of gradient ascent to restricted space O:

Regularizer Norm pair DI/ ratio Max gradient norm ~ ~ [Theorem 5.6] If every player runs Clairvoyant OMD with DilEnt in an n-player game, the average joint
Dilated Entropy [Kroer et al., 2020] ¢/, and (. norms O(2”]| Q| log |A)) < X1 < 1o(ng, x¢) = af}%ggax{wg, X) — D,(X||x¢) }- policy converges to a Coarse Correlated Equilibrium at the rate

o o 2 <
g!:aEtid(til.- Entror;y [Farina et al., 2021] il and| o norms  O(|| Q1H1|$‘8§ \Al) ; 1 Here, ¢ is a distance-generating function (DGF) and D, is the Bregman divergence. = < Onlog [V]log T/T).

ilEnt (this paper reeplex norms n <

Table 1. Comparison of diameter/convexity (|D|/u) ratio with prior results. It holds that In |V| < O(|| Q|| log | A]) Given the primal-dual norms || - || and || - || with ||w]|. < 1, the performance of OMD is determined by:

Lower Bound Implies Optimality of DIlEnt

= The strong convexity . of DGF over the primal norm || -
5 Y P [ -1 [Theorem 6.1 + Theorem 6.2] Any algorithm incurs an expected regret of at least

Tree-Form Sequential Decision Problem (TFSDP) > A larger convexity = enables a larger step size = easier to learn

Regret(T) > Q(y/In |[V|VT)

TFSDP models the decision-making process of players in extensive-form games. * The diameter |D| of the strategy space measured by DGF

> A smaller diameter = a smaller search space = easier to learn Under certain structural assumptions, the bound is free from hidden logarithmic factors.

= A decision point ; € J corresponds to an information set for the player.

« An observation point ja € ¥ represents the state that follows an action. = The diameter/convexity ratio |D|/u is the key factor in the performance of mirror descent.

DilEnt achieves an nearly-optimal diameter/convexity ratio:

“ @ = Better DGF = better regret upper bound in Theorem 5.4

We inspect the weight-one dilated entropy (DilEnt) in TFSDP:

}.\ A : o Player 1 ial = A contradiction arises since superior regret upper bounds violate the lower bound above.
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RS : > When TFSDP only has one decision point, ¢ reduces to entropy.
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We introduce a pair of primal-dual norms: the treeplex ¢;-norm || - || 1 and the treeplex /. .-norm || - ||#. '-:l: ot -#_ .
o
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Figure 1. An example of an EFG and its corresponding TFSDP. Notably, pg = Al. HUH”Hl — Sug <\u|, y>7 HUH”HO@ — Sug<|u\, X>. il n-
yc* X< |
zfgs:;ﬁfyfgfrmesiafﬁ?’ tshpeaicneteQrm_eélRia tsetgactg;e; Ssgrgiifif; with linearity. Each entry x|ja] represents the Here, O* is the dual polytope of O. Both treeplex norms can be computed via recursion:
| | [l = max Y fully,s (ullge =Y max |ull, .
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Here, p; denote the preceding observation point of decision point ;. functions. Mathematical Programming, pages 1-33, 2020.
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