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Motivation

Rare-events data with sparse models

@ Rare-events data are highly imbalanced binary response data.

» Rare diseases, click-data on recommendation system.

» Massive, highly imbalanced.

» Invovle sparse models, e.g., limited number of key genes related to
rare-diseases.
Variable selection is not studied.
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o Subsampling is a popular approach for rare-events data analysis.

» Data balancing, reducing computational burdens.
» Usually done with strategy:

© Keeping all ones.
@ Subsampling zeros according to an important function ¢(x).

» Non-uniform subsampling reduces information loss.
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Motivation

Scale-dependent issue

prediction error

o Existing optimal subsampling functions are scale-dependent.

e May lead to inefficient results.

@ A wide concern in literature for various data types and models.
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Problem setup

@ Rare-events Model:

e+ (x:Bt) e8(x:0t)

1+ e +f(x:8t) - 1+ eg(x;6¢)

p(x;6;) == P(y = 1|x) =

Then, oy — —o0 as N — oo implies that r—0.
o IPW Adaptive Lasso for Variable selectlon

Ns*ub ésub

A Byl
Hsvdp = arg max Z (Tsub) )\NZ ~ (j) s (1)

o i=1 Vi = By

where E?ub = ys“bg( sub- 9) — log{1 + e8(xF; 9)}

@ Both optimal probabilities and adaptive lasso requires a pilot
estimator. It is natural to combine them into one unified framework.
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Theoretical analysis
Asymptotic properties of §2dp

~

@ Consistency in variable selection: limy_o P(Ay = A) =1
@ Asymptotic normality: +//V; V;&(i(é:&i) — 6y4)) ~ N(0, 1),

Vi) = Vi) T Voub(a) + where

Full data  Information loss

L fertm »

0 c=limy_oo % is the imbalance rate in the subsample.
Message from theoretical analysis

o The asymptotic variances Vyjj¢(4) and V(4 are of order N%

e If remain enough 0’s, e.g., ¢ = 0, there will be no information loss.

@ In case there is information loss ¢ > 0, we can choose ¢(x) to
minimize the information loss.
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Optimal subsampling function

Traditional optimal subsampling function and limitations
O A-optimality:
min (Vi) = ¢3%05(x) o p(x; 0:) M ay (x: 0]
© L-optimality:
min tr(My 1)) = ¢} 705 (x) o< p(x; 0:)[18(a)(x: 6:)].

o If g(x,0) = a+ x" B, then ] V(x) o p(x; 0)(1 + [Ix(a).

» Due to inaccurate pilot, scale of x4c) will affect FRIP L (x).

@ Construct optimal function by focusing on prediction error:

MSPE(0) = E, [{p(x; 6) — p(x; 90}1 .
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Optimal subsampling function

Scale-invariant optimal subsampling function
@ We prove that

—2a nad - X;
Nye 22 MSPE(G2(7,) ~ B~ {8} Z8 1T, @)Ly Z(a):

(
where Z(4) ~ N(0,1), @(4) = E [ gZ3 (x,6,)|, and
— p-1opgl/2
Liw = M(A) MW(A)-
@ The optimal function that minimizes the asymptotic mean is
1 .
PrT0s(%) o p(x; 61) (192 M8y (x: 1),

which is scale-invariant for a class of g including neural networks.
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Penalized MSCL estimator and practical algorithm

@ The IPW assigns smaller weights for more informative data points

e To improve the estimation efficiency, let/"® = —log { po(x$"?) },

sub P |ﬁ : |
O;dslél = arg max Z gilll;éll - Z Y v ) (2)
= 1Bpi”

where gsub subg(x_sub; 0) _ |0g{1 + eg(xisub?e)'f‘/,-sub}_

mscl,i =Y
) Efficiency mscl(A) <V w(A) and V, scl(.A) mle(A) if c=0.
Practical Algorithm

O First-stage screening:

@ Take a pilot sample, and obtain a lasso estimator.
© Estimate ¢(x;) for i=1,...,N and A.

@ Second-stage screening: Subsampling from 0’s with $(x;), and
compute adaptive lasso.
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@ Case A: Small active effects.

@ Case B: Large and small active effects, different signs
© Case C: Large and small active effects, same signs.
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Conclusion

Conclusion

@ For rare-events data with sparse models, subsampling estimators can
be as efficient as full data estimators under the true model

@ Traditional optimal functions are scale-dependent. The scale-invariant
function based on predition error is a better choice.

Limitation and Future work

© Optimal functions are based on asymptotic normality and asymptotic
mean square error.

@ Optimal functions based on the quality of variable selection.

© Non-asymptotic behaviors.
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