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Motivation

Two-team games are common in many scenarios.

Figure 1: Example two team game (Airport Security): Consider a security chief

guarding the six gates of an airport against three different autonomous intruders.

Key Question

In such multi-team games, can agents within teams learn to coordinate and

act according to the best team strategy without explicit communication?
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Difficulties of the Problem

• Common independent algortihms do not have any guarantees for joint

team behavior.

• Prior works assume that agents can communicate beforehand and act as

if they are a single agent during the game.

Main Difficulty

While a team tries to learn the best strategy, other teams will also learn

and change strategies.
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Team (Potential) Games

• All players have aligning objectives

• There exist a common potential function ϕ, with the following property:

If any player changes their action while the rest keep it the same,

change in the payoff = change in the potential function.

Figure 2: Example Potential Game
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Zero-sum Potential Team Games (ZSPTG)

Figure 3: Multi-team Game

• All teams have different potential functions ϕm.

• Between the teams the relation might be competitive, cooperative or a

mixture of them.

We focus on competitive teams:

Zero-sum Potential Team Games (ZSPTG)
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Zero-sum Potential Team Games (ZSPTG)

A two-team ZSPTG consists of:

• Team 1 and Team 2, with agents I1, and I2.

• Action sets Ai for i ∈ I := I1 ∪ I2, and joint action sets

Am :=
∏

i∈Im Ai

• Zero-sum property: Potential functions ϕm for each team m = 1, 2 such

that

ϕ1 + ϕ2 = 0.

• Possibly a graph structure.
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Zero-sum Potential Team Games (ZSPTG)

Two-team ZSPTG can be generalized to multi-team ZSPTG with adding the

condition of separable potential functions.
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Figure 4: Example multi-team ZSPTG
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Team Nash Equilibrium

Definition

Given the strategy profile of teams π := {πm ∈ ∆(Am)}m∈T , we define the

team-Nash gap for team m as

TNG(π) :=
∑

m∈T TNGm(π), with TNG(π) is defined as

TNGm(π) := max
π̃m∈∆(Am)

{
ϕm(π̃m, π−m)

}
− ϕm(π),

where π−m := {πℓ}ℓ̸=m.

Correspondingly, we say that the strategy profile of teams π is ϵ-TNE if

TNG(π) ≤ ϵ.

For two-teams, this is also known as team-maxmin equilibrium!
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Algorithm Idea

• Log-linear learning (Converges to near efficient equilibrium in potential
games)

• Only a single player can change action

• Keep track of the last actions of others

• Soft best response to the last actions of teammates

• (Smoothed) Fictitious Play (Converges to nash equilibrium in
zero-sum polymatrix games)

• Every player updates their action

• Keep track of beliefs about every agent (average of actions they played)

• (Soft) best response to the beliefs

Let’s combine these two algorithms!
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Our Algorithm (Team-FP)

• In each team, only a single player changes action (can be relaxed for

independent case)

• Keep track of beliefs about joint actions of opponent teams and last

actions of the teammates

• Soft best response to the beliefs and last actions
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Main Result:

Theorem

Given a ZSPTG characterized by ⟨T , (Ai , ui )i∈I⟩, let every agent follow either

Team-FP or Independent Team-FP Algorithm. If stepsize assumption holds, then

the team-Nash gap for πk := (πm
k )m∈T satisfies

lim sup
k→∞

TNG(πk) ≤

{
τ log |A| for Team-FP

τ log |A|+ |T |2ϕ · Λ(δ, ϵ) for Independent Team-FP

almost surely, where ϕ := max(m,l,a) |ϕml(a)|.
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Proof Sketch

Figure 5: Team-FP Algorithm Dynamics for two teams (left), and the main proof

idea (right). We show the Markov Chain of a reference scenario where beliefs π1
t do

not change, behaves similar to the actual scenario.
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Proof Sketch
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Proof Sketch

Fictionally, we split the horizon into T -epoch lengths!
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Proof Sketch

• The action profiles form a Markov chain within an epoch in the fictional

scenario!

• The stationary distribution of the fictional scenario Markov chain:

µm
(n)(a

m)

• The action distribution of the actual scenario: µm
(n),k

:= E[amk | F(n)]

• The difference ∥µm
(n),k − µm

(n)∥ is bounded with arbitrarily small bounds.

• Using stochastic differential inclusion methods on the cumulative epoch

update,

πm
(n+1) = (1− β(n))π

m
(n) + β(n)

(
µ̂m
(n),⋆ + ωm

(n+1) + em(n)

)
,

we obtain convergence.
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Beyond ZSPTG

We expect Team-FP to converge in other type of games where FP converges:

• Potential games

• 2xN games

We also provide a finite-horizon Markov Game generalization of

Team-FP!
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Numerical Results
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(a) Varying group sizes of 1,

2, and 4.
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Figure 6: All the above figures show the variation of TNG over time. (a) Comparison of

different levels of explicit coordination for Team-FP: independent agents (group size 1), pairs of

cooperating agents (group size 2), and fully coordinated teams (group size 4). (b) Performance of

Team-FP and Independent Team-FP compared to Multiplicative Weights Update (MWU) and

Smoothed FP (SFP) algorithms in a 2-team ZSPTG. (c) Convergence of Team-FP against

stationary and competitive opponents in a 3-team ZSPTG.
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(b) 2xN General Sum Game
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Figure 7: All the above figures describes the variation of TNG over iterations for Algorithms

that are related to but outside the scope of ZSPTG. (a) The model-free and model-based

finite-horizon Markov games for extension Algorithms of Team-FP, for a game of 2-team each with

2 agents, with 2 states and 10 horizon length. (b) The behavior of Team-FP dynamics in a 2xN

general sum game, where a team competes against a single agent with random rewards. (c) The

behavior of Team-FP dynamics in a potential game over the underlying potential functions.
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Yes! The initial example also show convergence of average joint actions of

intruders to the Team Nash Equilibrium.

Figure 8: Airport Security Example
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