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Distributed Concept Drift

𝑃(𝑌|𝑋) varies over time

Doctor 1 Diagnose XSymptom A

Doctor 1 Diagnose YSymptom A

One year later

𝑃(𝑌|𝑋) varies across clients

Doctor 1 Diagnose XSymptom A

Doctor 2 Diagnose YSymptom A

At the same time

These two types of drift may occur simultaneously in federated learning



Motivation

▪ A single model fails to adapt to distributed concept drift:
Client 1: 𝑓 𝑥1; 𝜃 = 𝑦1

Client 2: 𝑓 𝑥1; 𝜃 = 𝑦2

Impossible

▪ Marginal distribution 𝑃(𝑋) is invariant when drift occurs

Feature extractor can be shared across clients, and each client owns a local classifier 
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Classifier Clustering

▪ Some clients may share the same conditional distribution 𝑃(𝑌|𝑋)

▪ Merging the classifiers under the same 𝑃(𝑌|𝑋) can improve the generalization performance

Decoupled-Clustering adapts to distributed concept drift and achieves better performance



Classifier Clustering

▪ Train classifier using a balanced batch ▪ Separate the classifier for each class and 

merge the classifiers under the same 𝑃(𝑌|𝑋)

• Why balanced batch?

The classifiers can be easily biased towards head classes.

Train the local classifier using a balanced batch to solve 

this disturbance by class imbalance.
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Adaptive Feature Alignment

▪ Contrastive-guiding feature alignment ▪ Aggregation of classifiers, extractors and anchors

Adjust alignment weight with the entropy of 𝑷 𝒀

Aggregation

Class 0

𝜙1,𝑐
(𝑡)

𝜙2,𝑐
(𝑡)

𝜙𝑘,𝑐
(𝑡) ത𝜙1,𝑐

(𝑡)⋯

𝜙3,𝑐
(𝑡)

𝜙4,𝑐
(𝑡) ത𝜙1,𝑐

(𝑡)

Class 𝑐

𝜙1,𝑐
(𝑡)

𝜙2,𝑐
(𝑡)

𝜙𝑘,𝑐
(𝑡) ത𝜙1,𝑐

(𝑡)⋯

𝜙3,𝑐
(𝑡)

𝜙4,𝑐
(𝑡) ത𝜙2,𝑐

(𝑡)

Classifier aggregation

Class 0

⋯Class 𝑐

⋯

Anchor aggregation

𝜃1
(𝑡)

𝜃2
(𝑡)

𝜃𝑘−1
(𝑡)

𝜃𝑘
(𝑡)

⋯ 𝜃(𝑡+1)

Extractor aggregation

Clients in the same cluster k ∈ 𝑆𝑚,𝑐
𝑡

 share

the clustered classifiers and anchors

𝐺𝑘 𝜃𝑘
𝑡

; 𝐴𝑘
𝑡

= −log
exp(𝑠𝑖𝑚(𝑓

𝜃𝑘
𝑡 𝑥 , 𝐴𝑘,𝑐

𝑡
/𝜏))

σ𝑖=1
𝐶 exp(𝑠𝑖𝑚(𝑓

𝜃𝑘
𝑡 𝑥 , 𝐴𝑘,𝑖

𝑡
/𝜏))

𝐿𝑘 𝜃, 𝜙𝑘 = 𝐹𝑘 𝜃, 𝜙𝑘 +
𝐻 𝑃𝑘

𝑡
𝑌

𝛾

𝜙𝑚,𝑐 =
1

𝑆𝑚,𝑐
𝑡

෍

𝑘∈𝑆𝑚,𝑐
𝑡

𝜙𝑘,𝑐
𝑡

, ∀𝑆𝑚,𝑐
𝑡

∈ 𝑆𝑐
𝑡 𝐴𝑚,𝑐

𝑡
=

1

𝑆𝑚,𝑐
𝑡

෍

𝑘∈𝑆𝑚,𝑐
𝑡

𝑎𝑘,𝑐
𝑡

, ∀𝑆𝑚,𝑐
𝑡

∈ 𝑆𝑐
𝑡

𝜃 𝑡+1 =
1

σ
𝑘∈𝐼 𝑡 𝐷𝑘

𝑡
෍

𝑘∈𝐼 𝑡
𝐷𝑘

𝑡
𝜃𝑘

𝑡



FedCCFA
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Generalized Accuracy under Sudden Drift

FedCCFA achieves SOTA performance



Classifier Clustering Results

• Our clustering method effectively measures the distance between each client

• Classifier clustering significantly improves generalization performance



Adaptive Feature Alignment Results

Clustered feature anchors facilitate more precise feature alignment under drift

Adaptive alignment weight is robust to the degree of heterogeneity
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Thank You!
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