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Introduction

e Motivation

= With the explosive growth in model complexity, the performance of LLMs has
been advancing.

= The growth in scale has resulted in a corresponding increase in computational
costs.

—> Efficient processing and compression of LLMs is required.

= Quantization is a promising solution and indispensable procedure for
facilitating the efficient deployment on devices that mainly support fixed-
point arithmetic.

= Considering the model complexity and required resources (e.g., training costs
and available dataset), quantization-aware training (QAT) is not practical for
compressing LLMs with billions of parameters.

- Recent studies have focused more on PTQ.



Classic PTQ Methods

e Key idea

» |nstead of choosing the nearest quantized value, classic PTQ methods attempt
to assign quantized values that minimize the loss degradation incurred by the
guantization:

min E [AwTH™) Aw]
= Computing and storing the Hessian matrix HM™) s infeasible.

- Independence between different layers or blocks (e.g., Transformer block)
has been assumed, relaxing the problem into the layer-wise or block-wise
reconstruction problem:

min E [”Q(W({)))X — W({))X”IZ:] (layerwise recon. )
min E[[[f(@(W®),X) — FW®,X)|:|  (blockwise recon.)

= Approaches targeting block-wise reconstruction perform better due to the
consideration of inter-layer dependencies inside the Transformer block.



PTQ for LLMs

e Recent trends

= While achieving competitive performance, classic PTQ methods require too
much processing time (e.g., more than 20 GPU hours for 3B models).

= NOT suitable for the real-world deployment of LLMs where models to be
deployed are frequently updated.
= For simplicity, recent methods either focus on layer-wise reconstruction (NOT
block-wise reconstruction) or give up optimizing a weight-rounding policy:
= GPTQ: weight-rounding optimization method targeting layer-wise
reconstruction
= AWQ, Z-Fold, OmniQuant, AffineQuant: quantization parameter (e.g.,

scale and zero-point) optimization methods that rely on a naive nearest-
rounding.

—> Limited low-bit quantization performance



Proposed Method

e Main goal

= Optimize the weight-rounding policy efficiently, yet targeting block-wise
reconstruction to consider inter-layer dependencies inside the attention
module

e Key idea 1 — novel quantization strategy
= Quantize each layer separately, yet targeting block-wise reconstruction
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Proposed Method

e Key idea 2 — refined quantization objectives

= Under the proposed quantization strategy, the block-wise reconstruction
error can be simplified by factoring out common terms affected by full-
precision layers.

" e.g., quantization of value projection layer (Wy,)
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Proposed Method

e Key idea 3 — efficient loss computation based on pre-computations
= Compute the value of loss functions based on certain pre-computed values
" e.g., quantization of value projection layer (Wy,)

E |[|aWy X AT | = tr (AWVE [X AT AXT] AW

= By computing E[XATAX”] in advance and reusing it in the quantization
process, we can avoid the overhead of computing E[||AW, XAT ||4] for
every input X.

= Since E[XATAXT] is pre-computed using all calibration data, we can
compute the loss considering the entire calibration dataset without any
memory issues.

—> Better estimate of the true gradient can be obtained, which could lead
to a more consistent update and faster convergence.



Experimental Results

e Outstanding low-bit performance with reasonable processing time

Table 1: Performance (PPL |) of the proposed aespa and conventional block-wise PTQ methods.
(a) WikiText-2

Precision Method OPT LLaMA LLaMA2

' 125M 1.3B 2.7B 6.7B 7B 13B 30B 7B 13B
FP16 Baseline 27.65 14.63 12.47 10.86 5.677 5.091 4.101 5.472 4.884
BRECQ [18] 33.25 16.09 13.37 OOM OOM OOM OOM OOM OOM

INT3 OmniQuant [27] 390.14 17.59 14.87 12.87 6.716 5.798 4.963 6.798 5.751
AffineQuant [20] 36.15 17.26 14.25 12.30 6.712 5.820 4951 6.795 5.757

aespa 32.71 15.79 13.14 11.23 6.579 5.611 4.688 6.241 5.462

BRECQ [18] 60.38 56.25 113.6 OOM OOM OOM OoOM OoOOM 0OOM

INT? OmniQuant [27] NaN 399.6 1.6e3 4.9e3 18.18 NaN 10.15 35.40 20.19
AffineQuant [20] 143.9 56.45 35.16 25.32 18.83 11.08 NaN NaN 18.49

aespa 71.18 24.26 22.22 15.71 11.94 10.30 7.845 13.99 12.14

Table 14: Time and memory cost of aespa and existing methods

Table 7: Cost of aespa and conventional methods (GFLOPS)
(a) INT2 quantization processing time
125M 350M 13B 27B 6.7B 13B
Method OPT

Cexist 6.7 7.5 11 15 34 41 125M 1.3B 278 6.7B

Ca” ’ 0.24 0.42 1.6 32 13 20 BRECQ [18] 108.2 min 10,71 hr ~ 19.15 hr OOM
i aespa 4.78 min 1.24 hr 2.83 hr 10.24 hr




Conclusion

e Propose a novel quantization method that optimizes the weight-
rounding policy efficiently, yet targets block-wise reconstruction to
consider inter-layer dependencies inside the attention module.

e Adopt a divide-and-conquer approach, simplifying the conventional
guantization objective that requires repetitive compute-intensive
attention operations.

e Propose a pre-computation-based efficient loss computation
approach that facilitates 10 times faster quantization process.

e Code will be available at

https://github.com/SamsunglLabs/aespa



