RouterDC: Query-Based Router by Dual Contrastive Learning for Assembling Large Language Models
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RouterDC Framework

Background

 Large language models (LLMs) have demonstrated proficient capabilities across various tasks.

They typically exhibit varying strengths and weaknesses across different tasks. Assembling :: RouterDC \: : LLMs E Table 1: Testing accuracy (%) on in-distribution tasks. “Time” denotes the total inference time in minutes.
multiple off-the-shelf LLMs can harness their complementary abilities, resulting in better per- ! . ¥ >y ! MMLU GSM8K CMMLU ARC-C HumanEval Avg | Time (m)
. : I 1 ! 1 I
formance than relying on a single LLM. e i : Mistral-7B 62.14 36.71 43.83 49.43 2898 4422 6.94
L . . . : | & X I 2 MetaMath-Mistral-7B 59.86 69.63 43.83 48.30 29.80 50.28| 7.23
* Routing is a promising assembling method which learns a router to select a suitable LLM Query x; > 2 >E(x;) Kk, || ! 2 M, | S zephyr-7b-beta 5981 133.00 4282 57095 5004 4313  6.73
. . . . . . () ; o ? : I : ~ . | . . . I/ .II . . .
for each qufery. .C;)mpared W|;[]h LLI|VI engeLrIr_]IIi)/:mg, routing is much more efficient as it only : o ! : § Chinese-Mistral-7B 5742 41.03 4967 43.47 o143 4260 7.11
needs to perform inference on the selected LLM. 1 e : 2 dolphin-2.6-mistral-7b  60.53 52.38 4371 5256 4510 50.86 6.91
L | | ! ks #} o Ms ~ Meta-Llama-3-8B 64.59 47.76 51.77 4943  26.73 48.06 6.33
« ZOOTER (NAACL, 2024) scores LLMs for each query, then minimizes Kulloack-Leibler di- ) R ,' dolphin-2.9-llama3-8b 5046 69.81 4472 4943 4939 5456 5.33
vergence between selection probability from the router and the softmax normalized score. Dttt © e t----' .
However, when multiple LLMs perform well for a query, the normalized score tends to be uni- Voting 63.30 6739 4748 5085 4285 54.37 46.59
form, which is not a strong supervision signal for learning the router. The proposed RouterDGC consists of CosineClassifier 59.72 69.03 4547 5057  46.33 54.22| 8.30
o))
: : : L s ZOOTER 60.48 66.69 45.27 53.13 4429  53.97 8.01
« An encoder £(x; w) parameterized by w which maps x into an embedding in RP. 3 LoraRetriever Clustering) 6333 66.63 51.77 570 1000 5577 786
. . i + T learnable LLM embeddings {k; € RP : t = 1,..., T} for the T LLMs. RouterDC 61.07 70.32 51.77 5852 51.02 5854 7.97
N o | 61 . e e
08 g 08 2 For a query x;, RouterDC generates a selection probability distribution over 1" LLMs as - RouterDC achieves the highest average accuracy, surpassing the best individual LLM (i.e., dolphin-2.9-llama3-8b)
£ 0.6 ftmax §0.6- § 1 . _ ' . ' g
A 04 I%{> 504/ 5 | R(x;;0) = softmax [sim(€ (x;: w), ky), ..., sim(E(x;; w), k)] * RouterDC is better than ZOOTER and CosineClassifier, demonstrating that the proposed dual contrastive losses can train a
2 where 6 = {w,ky, ko, ..., ky} is the learnable parameters in RouterDC and sim(-, -) is the cosine similarity. more effective router. RouterDC outperforms LoraRetriever, validating the usefulness of the sample-LLM contrastive loss.
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T ML Mo Mz My Ms Me My ToML My Mz My Ms Ms My Differengfoftffz ccores » RouterDC is about 6x faster in inference than voting.
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(a): Score distributions of LLMs on an example query (w/ or w/o normalization). (b): Distribution of the score Table 2: Testing accuracy (V) on out-of-distribution tasks. “Time” denotes the total inference time in minutes.

difference between the top two _ PreAlgebra MBPP C-EVAL Avg | Time (m)
HEMS Sample-LLM Contrastive Loss Mistral-7B 2480 37.90 46.43 36.38 4.31
- Based on the score, we construct positive LLMs index set Z;" and negative LLMs index set Z~ as: ¢ MetaMath-Mistral-7B 39.15  37.74 45.17 40.69| 4.13
. | o | i zephyr-7b-beta 20.78 31.14 4487 32.26, 4.30
1. Z." consists of the indices of LLMs corresponding to the top- /i scores. § Chinese-Mistral-7B 18.48 2964 4844 3219 4.40
o) . .
2. I consists of the indices of LLMs corresponding to the bottom-/ _ scores with sgt) < 0.5. 8 &Oli)h'a'z'&rg'z[l;aljb 2323 jggg ‘512(1)? 2838 252
Consider a set of LLMs {M; : t = 1,...,T} and a training set Dyqin = {(x;,y;) : i = 1,...,n}, , | y | _ | ela-Liama-o- ' ' : ' '
where x; IS a query (i.e., question) and y; Is its answer (i.e., ground truth). We design a scoring Wf expgct the rputer to pull thehquery embefﬂl;q Ex; w).closerkto the posnItlxe LLMs’ embeddings tke, : £+ € dolphin-2.9-llama3-8b 39.72 47.34 4480 4395 315
method to assess the performance of LLMs on queries. Z;"} while pushing apart from the negative LLMs’ embeddings 1k;_:t— € Z; }. Voting 30.03 41.60 4850 43.04 27.43
. . . Sim<5<Xi;W>,k ) . .
* For an open-ended generation query x,; (requiring a long answer, e.g., GSM8K), we feed it to r e-LLM(X;, yi; 0) = Z — log € " > CosineClassifier 36.97 38.48 4777 4107 443
. (1) . sample- R4l sim(E (x;w) ki, ) 3 sim(&(x;;w).k; ) § ZOOTER 34.44 41.10 4495 40.164 4.28
LLM M times to generate outputs {yi,m .m = 1,..., M}, then define the score of LLM M; L €T’ € t_eZ © § LoraRetriever (clustering) 35.36  43.12 52.01 43.50 4.22
on the query x; as: Sample-Sample Contrastive Loss RouterDC 38.81 46.80 51.93 45.85 4.24
t 1 - (t « Minimizing the sample-LLM contrastive loss alone is not stable. Some similar queries can have dissimilar
st = 37 2, evaluate(s’,. i) bedd d may be routed to different LLM
2 1,m’ embeddings and may be routed to different S.
M= 9 y be rou | Summary

« Training samples are grouped into N groups {K1, ..., Ky} by applying k-means algorithm on extracted t-SNE

, , , | | | low-dimensional vectors. For a query x; € K;, we randomly select an in-group query xj € K, and an out- Mictral. 7B
* For a mu/t/p/e-chmcef.questloq X, vy|th an option set A; (e.g., MMLU), we define the score group set X~ C {Uj’7éj /Cj/} of H queries from the training mini-batch at each iteration. = MetsMa;E-giitrawB PreAlgebra
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« Experimental results show that RouterDC effectively assembles
LLMs and outperforms individual top-performing LLMs as well as
existing routing methods. In-Distribution

« We learn a router R(x; 8) by minimizing the final objective consisting of sample-LLM and sample-sample con-
trastive losses, i.e.,

L(Drrain; 0) = E £sample-LLM<Xz'> yi; 0) + A ﬁsample-sample(XiQ 0) L
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