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The goal is to rank LLMs on human alignment utilizing pairwise comparisons.
Two different LLMs answer the same question, and a human picks the best
answer. Instead of humans, researchers often use a strong LLM.

¢

?

=)

Winner

C . ‘ —> [ Answer | ] \\
Question
6 —> Answer Wlnner

Aggregate data

?

=

&

&

&

50 Ranking methods Ranking

£
13)e
A

0

95

67

59

03 ELO

(&)

5

0

26

19

51 Bradley-Terry (BT)

33

74

0

41

Win-rate

41

81

59

0

: Bé
77

(BN ExE

31

49

24

23

; 4 [e

e
Limitations )

ELO and BT assume transitivity
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is more practical than 'n‘

Does usmg.a strong LLM mste.ad \between all pairs of modeI5/
of humans influence the ranking?

B BT cannot handle ties

Win-rate requires comparisons
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Our framework: Prediction-Powered Ranking
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Difference between human
and strong LLM preferences

)

clooee JEE e
S
(2
|| )|E
(o;o’) 0 | 85|64 |28 |85
15| 0 | 23 |12 | 55
36 |77 | 0 | 26 | 84
72 188 |74 | 0 | 90
15 | 45| 16 | 10 | O

We combine a small amount of
pairwise comparisons by humans
and a strong LLM, with a large
amount of pairwise comparisons
by the strong LLM.

Ranking
method

Win-rate

p
Rank-sets: sets of

possible ranks each

@ model can take

" The true ranking is
contained in the rank-
sets with probability
. at least 1 — a Y,
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Rank-sets in practice

Prediction-Powered Ranking of Large Language Models

Manuel Gomez-Rodriguez

PAPER CODE

How often does the rank-set of each model contain each rank?
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Baseline intersection probability
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Baseline intersection probability

Empirical probability that the rank-sets of
all models intersect the rank-sets using all

pairwise comparisons by humans.

the rank-sets get larger
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As the coverage increases,
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Rank-sets using PPR are smaller and

@ few pairwise comparisons by humans

more accurate than rank-sets using only
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