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Optimal Transport
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How do you solve it?

In full generality, OT does not have a solution or is very tough to solve.
Entropic OT adds a regularisation term to make things better.

inf / o — ylI2 dm(, ) + < Dy, (L @ )
mel(v,p)

Sinkhorn’s algorithm solves this and returns a map and a couplings

Small € : the algorithm does not converge.
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Our solution: ProgOT

S~~~ Blend the static OT problem with the dynamic perspective

S  Solve a series of Entropic , With reduced sensitivity to €
r
O
N |
O H B
.
=
=
]
Xtrain L Xtest A Ytrain A TProg (xt&st ) * Xinterpolate m

0.0000 0.0004




Theoretical Guarantee

To: OT map between p & v Tlgﬁ)g:ProgOT map between i, & o,

Theorem (Non-Asymptotic Consistency)

Given n i.i.d. samples from 1 and v, for an appropriate choice

of (ex)k and (a )k, the K-step progressive map T,g;?g satisfies
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under regularity assumptions on i, v, and the true map Ty.



Map estimation

[more in the paper]

ProgOT outperforms other map estimators, including neural ones.
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d= 128 d = 256

PrROGOT (0.099+0.009| 0.1240.01

EOT 0.12+0.01 | 0.16%0.02
Debiased EOT| 0.114+0.01 |0.128+0.002
Untuned EOT |0.250+0.023{0.276+0.006
Monge Gap | 0.36+0.02 [0.27340.005
3% ICNN 0.17740.0230.117+0.005
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i.’ Treated
Control
Drug Hesperadin 5-drug
dpca 16 64 256 rank
PROGOT (3.7+£0.4{10.1+0.4|23.1+0.4
EOT 4.1+£0.4|10.44+0.5| 26+1.3

Debiased EOT (4.0£0.5|15.24+0.6| 41+1.1
3% Monge Gap |3.7£0.5(11.0£0.5| 36+1.1
ICNN 39+0.4[14.3£0.5| 4642
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[more in the paper]

Coupling Recovery

ProgOT attains lower OT cost and lower entropy, at a lower computational cost.

Single-Cell data (4i dataset)
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Scalability 60k CIFAR10 images Blurred CIFAR
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ProgOT scales well to
large-sample problems
in high dimensions.
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) Tr(x.) 0.9999 | 0.9954
Sinkhorn L :
KL(m[[r.) [ 0.00008 | 0.02724 15 minutes to de-blur CIFAR10
# iterations 10 2379 . )
PROGOT | T (TProg) 1.000 | 0.9989 (with sharding on 8 gpus)
KL (7 |[Tprog) | 0.00000 | 0.00219
# iterations 40 1590
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