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Perceiving the 3D World — Traditional Perception Tasks

* Various perception tasks have been proposed to perceive 3D world with 2D observations
* Detection, tracking, segmentation, semantic occupancy...

* Hard to scale with a large of data
* Industries have collected tons of data
* But, the data annotation is painful: imagine you need to annotate each voxel for the scene...
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Neural Radiance Fields (NeRF)

Self-supervised learning: reconstruct the scene with RGB and optional LiDAR as inputs and supervision

* Very popular and fast-moving topic
* From simple objects, to unbounded scene, to autonomous driving scenes recently

Barron, J.T., Mildenhall, B., Verbin, D., Srinivasan, P.P. and Hedman, P., 2022. Mip-nerf 360: Unbounded anti-aliased neural radiance fields. In Proceedings of the
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IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5470-5479).
* Yang, J., lvanovic, B,, Litany, 0., Weng, X., Kim, S.W., Li, B., Che, T., Xu, D., Fidler, S., Pavone, M. and Wang, Y., 2023. Emernerf: Emergent spatial-temporal scene

decomposition via self-supervision. arXiv preprint arXiv:2311.02077.



Neural Radiance Fields (NeRF)

* Sounds all good! What could be wrong?
* Requires a large number of overlapping images
* Need training for each scene at test time, which take hours/minutes/seconds
* Only focus on view-synthesis tasks, lack rich semantics in learned 3D representations

* Issues for autonomous driving
* Sparse cameras with limited overlaps on vehicle, usually 4/6 cameras
* Need to run in real time for online driving - usually only ~0.1s latency is allowed for on-vehicle computation
* Need models with capabilities in downstream tasks 12:23
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Can we bring NeRF to handle sparse non-overlapping views,
be online and generalizable to new scenes, and support downstream tasks?
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* Fan,Z, Cong, W., Wen, K., Wang, K., Zhang, J., Ding, X., Xu, D., Ilvanovic, B., Pavone, M., Pavlakos, G. and Wang, Z., 2024. Instantsplat: Unbounded sparse-view pose-free
gaussian splatting in 40 seconds. arXiv preprint arXiv:2403.203089.



Our Approach - DistilINeRF

An online model that lifts 2D features into 3D, and can render RGB/depths, without test-time per-scene training
Distill a bunch of per-scene optimized NeRFs into one online model, for enhanced 3D geometry

Distill foundation model features into the online model, for enriched semantics

Support downstream tasks: rendering, open-vocabulary query, zero-shot semantic occupancy prediction
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Ca Pa bI|ItIES Rendering W|thout Test-Time Per-Scene Optimization, Enable Zero-Shot Downstream Tasks
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Novel View Synthesis without test-time per-scene optimization, given single-frame images
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Generalization: Trained on nuScenes, strong generalized performance on the unseen Waymo dataset
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Row 2: zero-shot transfer with decent reconstruction quality

Row 3: enhanced quality via simple color alterations to account for camera-specific coloring effects
Row 4: after fine-tuning, our model surpasses the SOTA per-scene EmerNeRF in the reconstruction quality

<A NVIDIA.



Com Pa rison: Significantly outperform SOTA generalizable NeRF methods in driving scenes
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Comparison: On-par with SOTA per-scene optimized NeRF in driving scenes (EmerNeRF)
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