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Introduction

(Iterative) Federated One-Shot Federated Fens: Hybrid of FL and
Learning (FL) Learning (OFL) OFL

Huge communication Low communication Low communication
costs costs costs

Good accuracy Not so good accuracy Good accuracy




Fens: Two Phase Learning
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Phase 1: One-Shot : . Phase 2: Iterative
Local Training Aggregatlcin J Aggregator Training

O : Trained local model Aggregation model . Aggregation model

Ensemble dispatched (for logits/predictions)

to all clients




Fens: Important Characteristics

Key observation: a MLP suffices as
the aggregator model

Size of Aggregator <« Size of local
model

[terative training induces very low
additional comm. cost

Low communication costs
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Stacked Generalization [Wolpert, 1992]

Level 1 (L1) generalizers correct the
biases of Level 0 (LO) generalizers

Higher accuracy than standard OFL




Results

Fens vs OFL and FL

Accuracy properties of FL
with communication
properties of OFL

\ Co-boosting (one-shot)
" FENS
B FedAdam (iterative)
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Test accuracy [%]
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100 84 84 -

Client comm. [GiB]

0.01 0.05 0.1
Data heterogeneity ()

CIFAR-10

Please checkout our paper for more
experiments and results!
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