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Problems with standard “local” SAEs

e Local SAEs are trained only to minimize the reconstruction loss at a layer.

e This does not prioritize learning features based on explaining network
performance.

e Therefore, they may learn less important or irrelevant features.
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Three settings: local, e2e, e2e+downstream
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Results: Pareto Improvement
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Fewer than half the active features per datapoint (LO) to explain same performance.
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Results: Auto-Interpretability
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Figure 9: Comparison of auto-interpretability scores between SAEcsc+ds and SAEjoca. We choose two pairs at
every layer, one with similar Lq (see Table 3) and the other with similar CE loss increase (see Table 2). Error
bars are a bootstraped 95% confidence interval for the true mean auto-interpretability scores. Measured on
approximately 200(4-2) randomly selected features per dictionary.

e2e+downstream SAEs are approximately interpretable as local SAEs
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Results: Dictionary Geometry
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Figure 3: Geometric comparisons for our set of GPT2-small layer 6 SAEs with similar CE loss increases (Table

1). For each dictionary element, we find the max cosine similarity between itself and all other dictionary elements.

In 3a we compare to others directions in the same SAE, in 3b to directions in an SAE of the same type trained
with a different random seed, in 3c to directions in the SAE;... with similar CE loss increase.
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Downside

e e2e SAEs are 2.5x slower to train (from scratch) on GPT2-small.
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