
Optimal and Approximate Adaptive Stochastic Quantization
Ran Ben Basat1, Yaniv Ben-Itzhak2, Michael Mitzenmacher3, Shay Vargaftik2

1 UCL 2 VMware Research 3 Harvard University

1 - Summary

We revisit the Adaptive Stochastic Quantization (ASQ) problem and
introduce QUIVER. QUIVER improves ASQ’s computational com-
plexity from O(2b · d2) to O(2b · d) and memory usage from O(d2)
to O(2b · d). This efficiency is achieved by showing that the dynamic
programming equations for the problem have special properties that
allow for faster solutions, as well as specialized preprocessing and
additional implementation optimizations. We also propose an ap-
proximation variant of QUIVER that strikes a balance between speed
and precision, making it useful for quantizing large vectors on-the-fly.

2 - Introduction

The vector quantization problem
Given a vector X ∈ Rd, compress it to b bits per coordinate represen-
tation X̂ while minimizing

E
[∥∥∥X − X̂

∥∥∥2]
.

Essential for a wide range of ML applications, including gradient and
model compression.
Stochastic quantization

𝑥↓ 𝑥↑

𝑥

Given x ∈ R and two quantization values x↓ ≤ x and x↑ ≥ x, SQ
rounds x to x̂ = x↑ w.p. x−x↓

x↑−x↓
and to x̂ = x↓ otherwise. Importantly,

it is unbiased, i.e., E[x̂] = x and satisfies Var[x̂] = (x↑ − x)(x − x↓).
Stochastic quantization of a vector
Given a set Q ⊂ R such that max Q ≥ max X and min Q ≤ min X ,
denote for each x ∈ X :

x↓ = max{q ∈ Q | q ≤ x}.

x↑ = min{q ∈ Q | q ≥ x}.

Apply stochastic quantization for each x ∈ X independently.
Adaptive stochastic quantization
Given a sorted vector X ∈ Rd, pick Q ⊂ R of size |Q| = 2b that
minimizes E

[∥∥∥X − X̂
∥∥∥2] when applying stochastic quantization.

This improves over input-agnostic selection of quantization values at the
cost of additional computation.
Our goal is to compute the set Q efficiently.

3 - Why adaptive and why unbiased?
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A single vector with i.i.d Lognormal(0, σ2) entries.
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Averaging multiple identical vectors with Lognormal(0, 1/2) entries.
• Adaptive methods have lower error.
• Unbiased solutions’ error diminishes with the # of averaged vectors.

4 - The QUIVER algorithm

Denote MSE [i, j] the optimal MSE of quantizing the prefix vector Xj =
x1, . . . , xj using i quantization values that include xj, that is:

MSE [i, j] = min
Q:|Q|≤i,xj∈Q

∑
x∈Xj

(x↑ − x)(x − x↓).

ZipML (ICML 2017) observed that there exists an optimal Q for which
Q ⊆ X , allowing them to define the following dynamic program:

𝑥1 𝑥𝑗⋯ ≤ 𝑥𝑘 ≤ ⋯

Quantize using 
𝑖 − 1 values

Quantize to 
{𝑥𝑘 , 𝑥𝑗}

MSE [i, j] = min
k∈{i,...,j}

MSE [i − 1, k] + C[k, j] ,

where C[k, j] = ∑
x∈{xk,...,xj}(xj − x)(x − xk), and solve it in O(2b · d2)

time and O(d2) space complexity.
To accelerate the computation, QUIVER defines a square matrix
A ∈ Rd×d for which A[k, j] = MSE [i − 1, k] + C[k, j].
A is implicit and is never computed or stored in memory, but our
methods allow evaluating each A[k, j] in constant time.
We prove that A is a totally monotone matrix and we can thus find
its row minimas using the SMAWK algorithm, yielding MSE [i, ·] from
MSE [i − 1, ·] in O(d) time.

5 - Approximate QUIVER

We split the range [x1, xd] into m equal-sized intervals to define the set

S = {x1 + ℓ · xd − x1

m
| ℓ ∈ {0, . . . , m}} .

Approximate QUIVER finds the set Q ⊆ S that minimizes
E

[∥∥∥X − X̂
∥∥∥2] when applying stochastic quantization in just O(d+m·2b)

time and space complexity, while providing rigorous accuracy guarantees.
6 - Empirical results

We evaluate vectors with i.i.d. LogNormal(0,1) entries.
Exact QUIVER is optimal and is orders of magnitude faster than ZipML.
Here, upper left is s = 4, bottom left is s = 16, and the figures on the
right have d = 216.
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ZipML QUIVER

Approximate QUIVER is both faster and more accurate than previous
approximate solutions. With small m values, it already has accuracy
comparable with an optimal solution. (Shown for d = 222. The figures
on the left have m = 1000 and those on the right have s = 32.)
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7 - Summary

Fast optimal and very fast approximate adaptive stochastic vector quan-
tization is possible, and there are many applications (e.g., gradient com-
pression, quantization for faster training, LLM KV cache compression).
Plenty more results in the paper.


