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Simulating py|x

pxy known to Alice and Bob

X ~ px

Z 1 X: Unlimited Common Randomness
Objective: Minimize R1 = E[len(f(X, Z2))]



Applications

1. Neural network-based compression

2. Model Compression [Havasi et al., 2019]
3. Differential privacy [Shah et al., 2022], [Liu et al., 2024]

Goal: Simulate n i.i.d. uses of the target channel simultaneously

Existing simulation algorithms: exp(n) computational complexity



Sampling-based Methods

Existing SOTA algorithms fall under this category: [Flamich, 2024],
[Flamich et al., 2024] etc.

Common Randomness: Yi’, Yg, Yg, s Yf, . i.i.d. codebook ~ pyn
|

Selection rule at encoder, depends on X" and Y7
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Sampling-based Methods

Existing SOTA algorithms fall under this category: [Flamich, 2024],
[Flamich et al., 2024] etc.

Common Randomness: Yi’, Yg, Yg, s Yf, . i.i.d. codebook ~ pyn

I

Selection rule at encoder, depends on X" and Y7
Transmit selected index I to the decoder, using =~ logI bits
The rate, logl, scales linearly in n

Computational complexity (o< I) scales exponentially in n
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Channel Coding Setup
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Good decoders are highly
efficient vector quantizers

Channel simulation

subsumes quantization
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Error-Correcting Codes for Simulation

Polar codes [Arikan, 2008]:
e Capacity achieving codes for symmetric binary input channels

e O(nlogn) encoding and decoding complexity

PolarSim:

e Rate-efficient simulation algorithm for symmetric binary output
channels

e O(nlogn) encoding and decoding complexity
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Experimental Results: BSC

Y=Xe&Z Z~Bern(p), X~ Bern(l)
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Experimental Results: Reverse BEC

X=Y-Z, Z~Bern(l—¢€), Y~Unif{—1,1}
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Experimental Results: Reverse AWGN

X=Y+2Z Z~N(0,0%), Y~Unif{—1,1}
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Comparison with SOTA: BSC

GPRS: [Flamich, NeurlPS, 2023]
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[Sriramu, Barsz, Polito, Wagner, 2024]
Consider a symmetric distribution Pxy in which Y is binary.
1. (Correctness:) Our scheme simulates the channel p;il')’( exactly.
2. (Optimality:)
lim 1E[Ien(b)] — I(X;Y),

n—0oo n

where b is the output of the encoder.

3. (Efficiency:) The encoder and decoder have nlogn complexity.
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