Fast Channel Simulation via Error Correcting Codes

Sharang Sriramu, Rochelle Barsz, Elizabeth Polito, Aaron Wagner

Alice

Bob

 p_{XY} known to Alice and Bob

 p_{XY} known to Alice and Bob

 $X \sim p_X$

 $Z \perp \!\!\! \perp X$: Unlimited Common Randomness

 p_{XY} known to Alice and Bob

 $X \sim p_X$

 $Z \perp \!\!\! \perp X$: Unlimited Common Randomness

Objective: Minimize $R_1 = E[len(f(X, Z))]$

Applications

- 1. Neural network-based compression
- 2. Model Compression [Havasi et al., 2019]
- 3. Differential privacy [Shah et al., 2022], [Liu et al., 2024]

Goal: Simulate *n* i.i.d. uses of the target channel simultaneously

Existing simulation algorithms: exp(n) computational complexity

Existing SOTA algorithms fall under this category: [Flamich, 2024], [Flamich et al., 2024] etc.

Common Randomness: $Y_1^n, Y_2^n, Y_3^n, \dots, Y_I^n, \dots$ i.i.d. codebook $\sim p_{Y^n}$

Selection rule at encoder, depends on X^n and Y_1^n

Existing SOTA algorithms fall under this category: [Flamich, 2023], [Flamich et al., 2024] etc.

Common Randomness: $Y_1^n, Y_2^n, Y_3^n, \dots, Y_I^n, \dots$ i.i.d. codebook $\sim p_{Y^n}$

Selection rule at encoder, depends on X^n and Y_2^n

Existing SOTA algorithms fall under this category: [Flamich, 2024], [Flamich et al., 2024] etc.

Common Randomness: $Y_1^n, Y_2^n, Y_3^n, \dots, Y_I^n, \dots$ i.i.d. codebook $\sim p_{Y^n}$

Selection rule at encoder, depends on X^n and Y_3^n

Existing SOTA algorithms fall under this category: [Flamich, 2024], [Flamich et al., 2024] etc.

Common Randomness: $Y_1^n, Y_2^n, Y_3^n, \dots, Y_I^n, \dots$ i.i.d. codebook $\sim p_{Y^n}$

Selection rule at encoder, depends on X^n and Y_I^n

Transmit selected index I to the decoder, using $\approx \log I$ bits

The rate, log I, scales linearly in n

Computational complexity ($\propto I$) scales exponentially in n

Error-Correcting Codes for Simulation

Error-Correcting Codes for Simulation

Channel Coding Setup

Good decoders are highly efficient vector quantizers

Channel simulation subsumes quantization

Error-Correcting Codes for Simulation

Polar codes [Arikan, 2008]:

- Capacity achieving codes for symmetric binary input channels
- O(n log n) encoding and decoding complexity

PolarSim:

- Rate-efficient simulation algorithm for symmetric binary output channels
- O(n log n) encoding and decoding complexity

Experimental Results: BSC

$$Y = X \oplus Z$$
, $Z \sim Bern(p)$, $X \sim Bern(\frac{1}{2})$

Experimental Results: Reverse BEC

 $X = Y \cdot Z$, $Z \sim \text{Bern}(1 - \epsilon)$, $Y \sim \text{Unif}\{-1, 1\}$

Experimental Results: Reverse AWGN

$$X = Y + Z$$
, $Z \sim \mathcal{N}(0, \sigma^2)$, $Y \sim \text{Unif}\{-1, 1\}$

Comparison with SOTA: BSC

Theorem

[Sriramu, Barsz, Polito, Wagner, 2024]

Consider a symmetric distribution P_{XY} in which Y is binary.

- 1. (Correctness:) Our scheme simulates the channel $p_{Y|X}^{\times n}$ exactly.
- 2. (Optimality:)

$$\lim_{n\to\infty}\frac{1}{n}E[\operatorname{len}(b)]\to I(X;Y),$$

where *b* is the output of the encoder.

3. (*Efficiency:*) The encoder and decoder have *n* log *n* complexity.