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Cutout and CutMix

(cat,dog) = (0,1)
Cutout

(cat,dog) = (0.4,0.6)
CutMix

(cat,dog) = (0,1)
Original

[DeVries and Taylor (2017); Yun et al. (2019)]



 TL;DR

We investigate the benefit of 

Cutout and CutMix for learning features from data, and


show ERM < Cutout < CutMix in "extracting" rare features



Characteristics of Images

Label-dependent feature

e.g. Cat's face

Label-independent noise 

e.g. background

Training Data Test Data

generalize



Data Distribution
We now define our feature-noise data distribution ￼ .


Label ￼  is sampled uniformly at random, and  
data point ￼  consists of ￼  "patches" of three different kinds:

(X, y) ∼ 𝒟

y ∈ {±1}
X = (x(1), …, x(P)) P

￼x(1) ￼x(2) ￼x(3) ￼x(4) ￼x(5) ￼⋯ ￼x(P)

X ∈ ℝd×P One Feature Patch 

One Dominant Noise Patch 

￼  Background Noise PatchesP − 2



Data Distribution
Feature Patch. For each given label ￼ ,  
there are ￼  feature vectors ￼   
which occur with conditional probabilities ￼ . 


There are three kinds of features, with different levels of rarity (small ￼  means rare) 
Common ￼ , Rare ￼ , and Extremely Rare ￼ .


Given the choice of ￼ , choose ￼  from ￼  with probability ￼  and 
position ￼  uniformly at random, set ￼ . 

y ∈ {±1}
K {vy,k}k∈[K]

{ρk}k∈[K]

ρk
𝒦C ⊂ [K] 𝒦R ⊂ [K] 𝒦E ⊂ [K]

y v {vy,k}k∈[K] {ρk}k∈[K]
p* ∈ [P] x(p*) = v

Here, ￼  is orthonormal, ￼  , and ￼ .{vs,k}s∈{±1},k∈[K] ρ1 ≥ ρ2 ≥ … ≥ ρK ∑
K

k=1
ρk = 1

￼x(1) ￼x(2) ￼x(3) ￼x(4) ￼x(5) ￼⋯ ￼x(P)



Data Distribution
Dominant Noise Patch.  
Sample patch index ￼ . Set 


                              ￼ ,


where ￼  is "feature noise" and ￼ .


The feature noise is drawn ￼  to model "confusing" features.


Background Noise Patch. The remaining ￼  patches ￼  are filled with 
independent and identically distributed Gaussian noise ￼ . 

p̃ ≠ p*

x(p̃) = αu + ξ(p̃)

αu ξ(p̃) ∼ N(0, σ2
dΛ)

u ∼ Unif{v+1,1, v−1,1}

P − 2 p ∈ [P]∖{p*, p̃}
x(p) = ξ(p) ∼ N(0, σ2

bΛ)

Here, ￼  and ￼ .Λ = I − ∑ vs,kv⊤
s,k σd ≫ σb

￼x(1) ￼x(2) ￼x(3) ￼x(4) ￼x(5) ￼⋯ ￼x(P)



Network Architecture
We define 2-Layer CNN ￼ , 
parameterized by ￼ . 


For input ￼ ,  
we define

fW : ℝd×P → ℝ
W = {w1, w−1} ∈ ℝd×2

X = (x(1), …, x(P)) ∈ ℝd×P

fW(X) = ∑
p∈[P]

ϕ (⟨w1, x(p)⟩) − ∑
p∈[P]

ϕ (⟨w−1, x(p)⟩) .

￼x(1) ￼x(2) ￼x(3) ￼x(4) ￼x(5) ￼⋯ ￼x(P)

w1 w−1 ⋯
￼ϕ

w1 w−1

+1
−1

+

If ￼ , predict ￼ , and vice versa.


The activation function ￼  is a smoothed leaky ReLU activation.

fW(X) ≥ 0 y = + 1

ϕ



Training Procedure 1: ERM

We consider GD on ERM loss ￼  with learning rate ￼ .ℒERM(W) η

Training Data:  ￼{Xi, yi}i∈[n]
i.i.d∼ 𝒟

ℒERM(W) :=
1
n ∑

i∈[n]

ℓ(yi fW(Xi)),

We define ERM loss as

where ￼  is the logistic loss ￼ .ℓ( ⋅ ) ℓ(z) = log(1 + exp(−z))



Training Procedure 2: Cutout
Augmented Data:  For each ￼  and ￼  i ∈ [n] 𝒞 ∈ ([P]

C )

We fix ￼ . ￼  is a uniform distribution on ￼ .1 ≤ C < P/2 𝒟𝒞 ([P]
C )

We define Cutout loss as

ℒCutout(W) :=
1
n ∑

i∈[n]

𝔼𝒞∼𝒟𝒞
ℓ(yi fW(Xi,𝒞)) .

We consider GD on Cutout loss ￼  with learning rate ￼ .ℒCutout(W) η

x(p)
i,𝒞 = {x(p)

i if p ∉ 𝒞
0 otherwise

.Xi,𝒞 = (x(1)
i,𝒞, …, x(P)

i,𝒞) where



Training Procedure 3: CutMix
Augmented Data:  For each ￼  and ￼ . i, j ∈ [n] 𝒮 ⊂ [P]

We define CutMix loss as

ℒCutMix(W) :=
1
n2 ∑

i,j∈[n]

𝔼𝒮∼𝒟𝒮 [ |𝒮 |
P

ℓ(yi fW(Xi,j,𝒮)) + (1 −
|𝒮 |
P ) ℓ(yj fW(Xi,,j,𝒮))] .

Xi,j,𝒮 = (x(1)
i,j,𝒮, …, x(P)

i,j,𝒮) where x(p)
i,j,𝒮 = {

x(p)
i if p ∈ 𝒮

x(p)
j otherwise

.

We consider GD on CutMix loss ￼  with learning rate ￼ .ℒCutMix(W) η

￼  is a distribution such that: 1. uniformly choose size ￼ and 2. uniformly choose ￼  from ￼ .𝒟𝒮 s ∈ {0,1,…, P} 𝒮 ([P]
s )

￼i ￼j ￼i ￼i ￼i ￼j ￼j



Main Results - ERM

Let ￼  be iterates of ERM training. Then with high probability, there exists 
￼  such that any ￼  satisfies the following:


1. (Perfectly fits training set): For all ￼ , ￼ 


2. (Random guess on new data with rare and extremely rare features):


￼

W(t)

TERM T ∈ [TERM, T*]

i ∈ [n] yi fW(T)(Xi) > 0.

ℙ(X,y)∼𝒟[yfW(T)(X) > 0] ≈ 1 −
1
2 ∑

k∈𝒦R∪𝒦E

ρk

Theorem 3.1 (ERM Training)

Here, ￼  is any large enough (polynomial in ￼ ) admissible training iterationsT* d



Main Results - Cutout

Let ￼  be iterates of Cutout training. Then with high probability, there 
exists ￼  such that any ￼  satisfies the following:


1. (Perfectly fits augmented data): For all ￼  and ￼ , ￼ .


2. (Perfectly fits original training data): For all ￼ , ￼ 


3. (Random guess on new data with extremely rare features): 


￼

W(t)

TCutout T ∈ [TCutout, T*]

i ∈ [n] 𝒞 ∈ ([P]
C ) yi fW(t)(Xi,𝒞) > 0

i ∈ [n] yi fW(T)(Xi) > 0.

ℙ(X,y)∼𝒟[yfW(T)(X) > 0] ≈ 1 −
1
2 ∑

k∈𝒦E

ρk

Theorem 3.2 (Cutout Training)



Main Results - CutMix

Let ￼  be iterates of CutMix training. Then with high probability, there 
exists some ￼  that satisfies the following:


1. (Achieves a Near Stationary Point): ￼ 


2. (Perfectly fits original training data): For all ￼ , ￼ 


3. (Almost perfectly classifies test data): ￼ .

W(t)

TCutMix ∈ [0,T*]

∇WℒCutMix (W(TCutMix)) ≈ 0

i ∈ [n] yi fW(T)(Xi) > 0.

ℙ(X,y)∼𝒟[yfW(T)(X) > 0] ≈ 1

Theorem 3.3 (CutMix Training)



Main Results - Summary
Training Method 

\ Rarity Common Rare Extremely Rare

ERM (Vanilla 
Training)

Cutout

CutMix


