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Continual Learning NEUEALNOATON

Problem definition: The model is trained on learning tasks that
come one after another. The data of the learned tasks are no

Io.ngf:r \./|5|b.le. In ’fl'.ne inference stage, the model can have good bo0 P332 Fad«
discrimination ability for all the data of the learned tasks. /11 133 [©4%5
CIass-lnf:rementaI continual learning: Each task contains sever:al Task Task2 Task3
categories that have not been learned before, and the model is Schematic Diagram of Class

trained task by task. In the inference stage, the model has good Incremental Continual Learning

classification ability for all known category data when the task to
which the input image belongs is unknown.
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Continual Learning Based on Visual Prompt Tuning

Encoding task knowledge into a
prompt pool, selecting and updating
task-relevant prompts within the pool
based on the training data.
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Training interference: The features of the data from
previous tasks change as related prompts are updated,
leading to catastrophic forgetting.
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Analysis of the ViT Layer Forward Process fy;7(X|P)

hnai,?_tp_kens 1 2 3. Self-attention 4 Outggt_ tokens
i E — ,? (Affinity 1 (M [Aggregation ) M () i i
A sl @ Ki  K; _—
i | £ g Kx v g i !
X 2] LNX sl Vv s sl || 1
el 2 ke M plS e slod] ax (A {EP] s [Se| Vil 2 el
P |2 LN | E[ Qe 2 > [
1 1 < = w2 © 1 |
. OV e - D
: : 'é VP QP[____)s___I VP : :
p"rg)}ﬁf)fls — — | Attentionmap | J ) UJ =

Input: X € RV , P € RY*P, where N, M represent the number of image tokens and
prompts, respectively, and D denotes the token dimension.

Z = [X;P] € RW+M)*XD representing the concatenated tokens along channel dimension.

1. LayerNorm LN(-): 2. QKV- Transformation: | | 3. Self-attention f5,: | 4. Feed-Forward
Iy Qz = LN(Z)W, + b, B QxK; Network:
LN(z) = o, Oa+h K, =LNZW, + bk Fz = softmax VD Vz LayerNorm and

V, = LN(Z)W, + b, MLP
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Analyzing fvir(X¢|Py) = fvir(X¢|Pes1)

Image tokens Self-attention Output tokens
i i — = Affinity 1 M [Aggregation A Y () i i
_— gl @ Ki  Ki —
— s = K g = L
! ' X S LN(X \% < = | |
sl 4 Z X) S oy Ax A P> é || Sx |Se|x|Vx|FPF»|Z -PE L
P > LNP) |E| Qe S > '
1 | < = 2 < 1 I
— 2 e - D
! I AL Qpy___XxX___! Ve | :
SooSs — — Attention map | ) —J) U ===
Prompts (Dropped)
To ensure that the output tokens of Simplification of F;, = F;_:
X, remain consistent between tasks ¢t and
. Q KT Q [KT KT]
t+1le., (AZ = farr(Qx, Kz) = 2z _XLX P
= f, , = —
fitXelPy) = fuir(X¢|Pesq) VD VD
< S; = softmax(Az) = softmax(Ax Ap) = [Sx Sp]
) e R . V.
We d.Efme L = .[Xt’ Pel,Zess = [XoPra] This Fz = fag5(S2,Vz) = SzVz = [Sx Sp] VX]
requires satisfying the condition: P

FZt = FZ1:+1
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Two Sufficient Conditions

o o o . I mage tokens Self-attention utput tokens
Two sufficient conditions to satisfy | UEST ) (e e
FZt = FZt+1 : i__-—é- """""" é__?;(c:_— S ’KE—__;—‘_ g
IR i S ] IR R RS . : . AN R
faff(QXt: KZt) = faff(QXt' KZt+1) @ }__[______:L"—_—"{%'"m“’) g _’EP_’QX " +j§ LT *FZ+ AME +X
fagg(szt'vzt) = fagg(szt+1'vzt+1) @ : Pifbhibiis — é v QP:&;&;&%‘;‘;‘;‘ — J — (ES[O;;';)
|
Dfare(Qx, Kz,) = farr(Qx,. Kz,,, ), each side of the equation is: B B Qx|Kx Kj|
T T T T AZ - faff(QX; KZ) -
fare(Qx,. Kz,) = Qx,[Kx, Kp,| =[QxKx, Qx [LN(PIW; + b;]] VD
farr(Qx, Kz,,,) = Qx,[Kx, Kp,,,] = [Qx,Kx, Qx,[LN(Pry1)Wy + by ]7]
From CDfaff(QXt’ Kzt) = faff(QXt' KZt+1)’ we derive Azt = AZt+1 and SZt = SZt+1 SZ = SOftmaX(Az) = [SX SP]
_ . . . V.
@fage(Sz0 Vz,) = fage(Sz4,1) Vz,,,) » €ach side of the equation is: Fz = f100(Sz, Vz) = [Sx Se] [Vﬂ
fage(Sz,,Vz,) = Sx,Vx, + Sp,Vp, = Sx,Vx, + Sp,[LN(P)W,, + b,,]
fagg(szt+1’ VZt+1) = fagg(SZt’VZt+1) = SXtVXt + SPt [LN(P¢11)W,, + b, ]

Simplifying conditions ®® , we obtain: | Qyx W;/LN(P,)" = Qx, W) LN(P.,;)T = Qx, W) LN(P, + AP)"
Sp,LN(P,)W, = Sp LN(P,,1)W,, = Sp, LN(P; + AP)W,
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Simplification of the LayerNorm Term

P— + AP —
Qx, Wi LN(P)T = Qx,W/LN(P, + AP)T @ | INP)=—PQa+B LNP)= HpotoP o 01 g
Sp,LN(P,)W,, = Sp,LN(P; + AP)W,, @ Op Op,+AP

For the term LN(P; + AP), it cannot be expressed directly in terms of LN(P;) and AP.

Up,.+aPp = Hp,

Assuming the distribution of prompts remains unchanged during training:4 , * =~ _
tt+ _ t

Relationship between LN(P; + AP) and LN(P;) using AP :
Py + AP — pp, 4ap Pt"'AP_ﬂPt@a_I_B:(Pt_ﬂPt

Assumption of Distribution Invariance: {

LN(P, + AP) =

Qa+p=

Op,+AP Op,

AP AP
Oa+ﬂ>+a—®a=LN(Pt)+—®a

Op, P Op,

(Qx,W{)APT =0

From LN(P; + AP) = LN(P,) + j—:t O a, simplify®@: From®E@: {SPtAPW =0

-~

Qx. W/ APT It is sufficient to satisfy conditions
Qx, Wy LN(P)" = Qx, W, LN(Pt)T X Qa’® (Q)A)l,ﬂo@ @®:
S p, APW,, N | x, W, - |
Sp,LN(P,)W,, = Sp LN(P,)W,, + Oa ® 5 Sp,AP =0 |
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Conclusion
Image tokens Selt-attention Output tokens
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Prompts (Dropped)
To achieve the following objective: Introducing a constraint on the prompt
FrirXe|Py) = frirXe|Praq) distribution’s variation
Specifically, this requires: {Hptm: = Up,
Fz, =Fz,,, Op,+AP = Op,

This ultimately leads to the following two
conditions called consistency conditions.

fare(Qx, Kz,) = fare(Qx,. Kz,. ) (Qx,W{)APT = 0@
fagg(szt,vzt) = fagg(szt+1’vzt+1) Sp, AP =0

Converting into two sufficient conditions:
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Optimization of Consistency Conditions

Two-step optimization scheme:
1) Use the projection matrix B, (AP™ = B, P; ) to make AP" orthogonal to the subspace spanned by Q, W, ;
2) Use the projection matrix B, (AP = B,P; ) to make AP orthogonal to the subspace spanned by S;,.

Computing B; and B, via null space:
For B;: SVD ((thW,I )TQXtW,I ) let the matrix of right singular vectors corresponding to the

singular values that are (or close to) zero be U, o, then B, = U, (U],

For B,: SVD(Sg,Sp,), let the matrix of right singular vectors corresponding to the singular values
that are (or close to) zero be U, ,, then B, =U,,U;,

Finally, the update rule from gradient P; to update AP is given by:

AP = B,P:B; = (U,,UJ,)P:(U;,UT,) ®

The constraint on the distributional Up,+2p = Up, 1) @: Applying null space
variation of the prompt Op,+AP = Op, projection to the gradient
is achieved by introducing a loss function £; y: 2) @: Constraining the

Lin = ||pe,,, — ﬂPt”1 + |lop,,, - "Pt||1 distribution of the prompt
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Extension to Multi-Head Attention

The Transformer architecture generally employs multi-head attention, so the (QXthT )APT 0@
derived consistency conditions ?)@® need to be extended to multi-head attention. Sp, AP =0
Assuming there are H attention heads, let the h-th attention head for h € The prompt
[1,2,---, H] have its respective components Qy, ,, W », Sp, 5. To satisfy the distribution
consistency conditions across all attention heads, we define: constraint loss
T _ .
Yh € [1, 2’ e H]’ (th-hwk.h)APT =0 funCtIOl'I LLN =

SPt.hAP - 0
Q1 = |Qx,1Wi1; 5 Qx, Wiy | » representing the concatenated
matrices Qx, W, , from each attention head.

|pe,.,, — ﬂPt”l + [|op,,, —
ap ||, remains
independent of the
number of attention
heads, so no further
extension is required.

Q,. =|Sp,1;;Sp, | representing the concatenated Sp, , matrices
from each attention head.
Using block matrix operations, the consistency conditions for all
attention heads can be expressed as follows:

Q,APT =0
Q, AP =0
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Key Settings

Model used:
a) ViT-Base16 model pre-trained on ImageNet-21K, with prompts of length 4 inserted into all ViT

layers (referred to as VPT);
b) CLIP model, with prompts added to the image encoder, while the text encoder is frozen.

Evaluation benchmarks:
Four class-incremental test benchmarks, including 10-task CIFAR-100, 20-task CIFAR-100, 10-task

ImageNet-R, and 10-task DomainNet-200.

Evaluation metrics:
Accuracy (Acc., the higher, the better) and Forgetting (the lower, the better), with the average
results of three runs reported. Accuracy is the primary focus metric.
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Comparing with Baseline

“-Seq” : baseline "Upper-bound”: Jointly training all tasks at once, can be
“-NSP2” : our method considered the upper bound of performance in continual learning.

Comparison with the baseline using VPT and CLIP models
10S-CIFAR-100  20S-CIFAR-100  10S-ImageNet-R ~ 10S-DomainNet  Accu racy increased

Acc. 1 Forgetting | Acc. 7 Forgetting | Acc. T Forgetting | Acc. 1 Forgetting | by 4%~10%

VPT-Seq 87.27 12.33 82.36 17.36 72.46 19.41 73.28 25.65 /Eorgg;ttlr%ydecreasec'
VPT-NSP> 91.74 3.28 89.89 4.91 78.88 5.06 83.54 8.54 y 9/~ Qo
Upper-bound 93.87 - 03.87 - 84.60 - 89.25 - Accuracy increased

CLIP-Seq 72.91 15.13 71.37 17.89 75.69 19.21 67.73 35.60 by 6%~9%
CLIP-NSP> 80.96 12.45 79.83 13.77 82.17 6.42 77.04 18.33— Forgetting decreased
Upper-bound 84.52 - 84.52 - 84.86 - 81.65 - by 3%~17%.

Method

- The chaﬂg_e curve of accuracy as the number of tasks increases

PSR 0841 s segn T T Our  method consistently
5 82 50 w6 g0s ___, outperforms the baseline,

Ty LTI with its advantages bec?ming

L 2 3 4 5 6 7 8 9 1 Lz 3 4 s 6 7 s 9 w0 more pronounced over time.

(a) 10-split CIFAR-100 (b) 10-split ImageNet-R

Acc
100

9543 9459 93 g6 90

“ 92.36 9174

9743 9703 96.40

87.62

80 85.78

90 82.37

85
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Comparing with Existing Methods

Comparison with existing methods based on ImageNet-21K pre-trained VPT, numbers following *+ representing the standard deviation

10S-CIFAR-100 20S-CIFAR-100 10S-ImageNet-R 10S-DomainNet

Method Venue

Acc. Forgetting Acc. Forgetting Acc. Forgetting Acc. Forgetting
L2P CVPR’22 83.831004 7.63 1030 80.101072" - 61.57 1066 9.731047 81.17 053" 8.9841 25
DualPrompt ECCV’22 86.51i0_33 5.16i{)_09 82.02i0_32¢ - 68.13i0_49 4.68i{)_20 81.F«"()i{;._jfg@',Jr 8.04&0_31
CODA-P m CVPR’23 86.25:|:0_74 1.67:&0.26 - - 75-45:|:0.56 1.64i0_10 80.04:&0_7; 10.16;&0_35
ESN AAAT’23 86.341050 4764014 80.564004F -  62.6li006° -  79.224904710.6245 12
APG [33] ICCV’23 89.35 6.01 88.64 6.51 73.27 8.59 - -
LAE [10] ICCV’23 85.59. 046 - 83.93 1028 - 72.6610.63 - - -
DualP-LGCL IE ICCV’23 87.23:|:0_21 5.10:|:0_15 - - 69.46;&0_04 4.20;&0_05 - -
C-LN ICCVW’2386.951037 6.98 1043 - - 76.361051 8.31110g - -
EvoPrompt [18] AAAT24 87.97 1030 2.601040 84.64 1014 3.984024 76.831008 2.78+006 - -
OVOR-Deep m ICLR 24 85.99i0_89 6.42i2_03 - - 76-11i0.21 7-16i0.34 - -
DualP-PGP ICLR24 86.92400s 5354019 83.741001 7914015 69.34 4005 4531004 ; ;
InfLoRA I]ZII CVPR’24 87.06i0_25 - - - 75.65i0_14 - - -
EASE CVPR’24 87.76 - 85.80 - 76.17 - - -
CPrompt [ﬂjj CVPR’24 87.82i0_21 5.06:|:0_50 - - 77.14:|:0_11 5-97:|:0.68 82.97i0_34 7-45:|:0.93
VPT—NSP2 This work 91-74:|:0.63 3.28;&0_45 89.89i0_72 4-91:|:0.59 78.88;&0_50 5.06;&0_26 83.54i0_77 8.54i0_43

Our method Achieves state-of-the-art performance on all evaluation benchmarks.
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Ablation Study

Ablation study on B,, B, and £
20S-CIFAR-100  10S-ImageNet-R

10S-CIFAR-100 10S-DomainNet

B, B; Ly
Acc. 1 Forgetting | Acc. T Forgetting | Acc. 1 Forgetting | Acc. 1 Forgetting |
87.27 12.33 82.36 17.36 72.46 19.41 73.28 25.65
vV 90.58 6.91 88.13 10.27 78.05 8.14 82.31 10.89
vV 88.74 10.85 83.32 16.48 74.71 14.69 78.87 17.81
v vV 91.33 4.22 88.96 6.42 78.37 6.25 83.17 8.95
Vv v, 91.42 3.94 88.46 8.64 78.30 6.31 83.13 9.32
v Vv 89.36 9.32 86.67 11.59 75.27 13.35 79.45 16.50
vV VvV 9174 3.28 89.89 4.91 78.88 35.06 83.54 8.54

The first consistency condition, the orthogonal subspace projection matrix B;, has the most
significant impact on performance. However, B, and £, are also indispensable. The highest
accuracy and lowest forgetting rate are achieved only when all three components are used

together.
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Analysis of Reducing Training Interventions

As the number of learning tasks increases, if the issue of training interventions becomes more
severe, the model's loss on the old task data will be higher. Conversely, if training interventions
can be minimized or eliminated, the model's loss on the old task data will not increase.

The loss curves on the training data of the 1st and 2nd tasks as the number of learning tasks increases, comparing
the proposed method (VPT-NSP2) with the baseline method (VPT-Seq).

—&— VPT-NSP>-T, =—— VPT-NSP:-7, —&— VPT-Seq-T; =2 VPT-Seq-T> —&— VPT-NSP°-T, =—¥—VPT-NSP%-T, —h— VPT-Seq-T;, =2 VPT-Seq-T>
Loss Loss

L) 1-5 E L)
0.10F Baseline Baseline
1.0}
0.05 | oslh
Ours Ours
0.00 Task 0.0 — Task
1 9 3 4 5 6 7 8 9 10 | 2 3 4 5 6 7 8 9 10
(a) 10-split CIFAR-100 (b) 10-split ImageNet-R

The proposed method maintains almost no change in the loss on old task data, demonstrating its
ability to eliminate training interventions, thereby preventing forgetting.
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Stability-Plasticity Trade-off

The stability-plasticity trade-off in the proposed method is represented by AP = [,B, + (1 —
n2)11Pg[n:B; + (1 — nI], where the orthogonal subspace projection matrices B,, B, are weighted
and fused with the identity matrix 1. The parameters n,,7, € [0, 1] control the weights, allowing
for the adjustment of the trade-off between plasticity and stability.

When the weights 7,,7, are set to the same value, denoted as 7, the changes in accuracy and

as 7] decreases from 1.0 to 0.8 are shown in the following figure.
Acc. Acc. Ace. Ace.

N
/\91_56 91.57 89 65 8989 - A 7878 ’\83.32 83.54 25 97
91.25 - .
90.82 90.75 87 .58 - 78 .21 _ . 81.69
1.0 0.95 0.9 0.85 08 n 1.0 0.95 0.9 0.85 08 1M 1.0 0.95 0.9 0.85 08 1N 1.0 0.95 0.9 0.85 0.8 ﬁ
4.59 4.10 5.92
3.09 338 491 554 5.04
4.20 6.76 8.54
, 524 , , 594 677 , 9.65  10.93
v Forgetting : 5.99 ¥ Forgetting 8.78 ¥ Forgetting . 7.50 ¥ Forgetting 21251
(a) 10-split CIFAR-100 (b) 20-split CIFAR-100 (c) 10-split ImageNet-R (d) 10-split DomainNet

Accuracy is influenced by both stability and plasticity, and the best performance is achieved when
a good balance between the two is attained. An increase in plasticity means a weakened ability to
retain knowledge from old tasks, which results in a gradual increase in the forgetting rate.
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Thank You for Watching!

Author: Yue Lu (WeChat)
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