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Continual Learning

Model

Task1 Task2 Task3

Model Model ……

Schematic Diagram of Class 
Incremental Continual Learning

Problem definition: The model is trained on learning tasks that 

come one after another. The data of the learned tasks are no 

longer visible. In the inference stage, the model can have good 

discrimination ability for all the data of the learned tasks.

Class-incremental continual learning: Each task contains several 

categories that have not been learned before, and the model is 

trained task by task. In the inference stage, the model has good 

classification ability for all known category data when the task to 

which the input image belongs is unknown.



Continual Learning

Encoding task knowledge into a

prompt pool, selecting and updating

task-relevant prompts within the pool

based on the training data.

Prompt Pool

Key1 Prompt1

Query 
Function

Key2 Prompt2

Key3 Prompt3

Pre-trained 
ViT

Prediction

Classifier

L2P(CVPR22) DualPrompt(ECCV22)

CODA-Prompt(CVPR23) CPrompt(CVPR24)

Training interference: The features of the data from

previous tasks change as related prompts are updated,

leading to catastrophic forgetting.



Our Method
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Input: 𝐗 ∈ ℝ𝑁×𝐷 , 𝐏 ∈ ℝ𝑀×𝐷, where 𝑁,𝑀 represent the number of image tokens and 
prompts, respectively, and 𝐷 denotes the token dimension.
𝐙 = 𝐗;𝐏 ∈ ℝ 𝑁+𝑀 ×𝐷 , representing the concatenated tokens along channel dimension.

1. LayerNorm LN(⋅):

LN 𝐙 =
𝐙 − 𝝁𝐙
𝝈𝐙

⊙𝜶+ 𝜷

2. QKV- Transformation:

𝐐𝐙 = LN 𝐙 𝐖𝑞 + 𝒃𝑞
𝐊𝐙 = LN 𝐙 𝐖𝑘 + 𝒃𝑘
𝐕𝐙 = LN 𝐙 𝐖𝑣 + 𝒃𝑣

3. Self-attention 𝑓SA:

𝐅𝐙 = softmax
𝐐𝐗𝐊𝐙

⊤

𝐷
𝐕𝐙

4. Feed-Forward 
Network：
LayerNorm and 
MLP



Our Method

To ensure that the output tokens of 
𝐗𝑡 remain consistent between tasks 𝑡 and 
𝑡 + 1, i.e., 

𝑓V𝑖T 𝐗𝑡 𝐏𝑡 = 𝑓V𝑖T 𝐗𝑡 𝐏𝑡+1

We define 𝐙𝑡 = 𝐗𝑡; 𝐏𝑡 , 𝐙𝑡+1 = [𝐗𝑡; 𝐏𝑡+1] , This 
requires satisfying the condition:

𝐅𝐙𝑡 = 𝐅𝐙𝑡+1

Simplification of 𝐅𝐙𝑡 = 𝐅𝐙𝑡+1:

𝐀𝐙 = 𝑓aff 𝐐𝐗, 𝐊𝐙 =
𝐐𝐗𝐊𝐙

⊤

D
=
𝐐𝐗 𝐊𝐗

⊤ 𝐊𝐏
⊤

D
𝐒𝐙 = softmax 𝐀𝐙 = softmax 𝐀𝐗 𝐀𝐏 = 𝐒𝐗 𝐒𝐏

𝐅𝐙 = 𝑓agg 𝐒𝐙, 𝐕𝐙 = 𝐒𝐙𝐕𝐙 = 𝐒𝐗 𝐒𝐏
𝐕𝐗
𝐕𝐏

(Dropped)



Our Method

Two sufficient conditions to satisfy
𝐅𝐙𝑡 = 𝐅𝐙𝑡+1

𝐒𝐙 = softmax 𝐀𝐙 = 𝐒𝐗 𝐒𝐏

𝐅𝐙 = 𝑓agg 𝐒𝐙, 𝐕𝐙 = 𝐒𝐗 𝐒𝐏
𝐕𝐗
𝐕𝐏

𝑓aff 𝐐𝐗𝑡 , 𝐊𝐙𝑡 = 𝑓aff 𝐐𝐗𝑡 , 𝐊𝐙𝑡+1 ①

𝑓agg 𝐒𝐙𝑡 , 𝐕𝐙𝑡 = 𝑓agg 𝐒𝐙𝑡+1, 𝐕𝐙𝑡+1 ②

①𝑓aff 𝐐𝐗𝑡 , 𝐊𝐙𝑡 = 𝑓aff 𝐐𝐗𝑡 , 𝐊𝐙𝑡+1 , each side of the equation is:

𝑓aff 𝐐𝐗𝑡 , 𝐊𝐙𝑡 = 𝐐𝐗𝑡 𝐊𝐗𝑡
⊤ 𝐊𝐏𝑡

⊤ = 𝐐𝐗𝑡𝐊𝐗𝑡
⊤ 𝐐𝐗𝑡 LN 𝐏𝑡 𝐖𝑘 + 𝒃𝑘

⊤

𝑓aff 𝐐𝐗𝑡 , 𝐊𝐙𝑡+1 = 𝐐𝐗𝑡 𝐊𝐗𝑡
⊤ 𝐊𝐏𝑡+1

⊤ = 𝐐𝐗𝑡𝐊𝐗𝑡
⊤ 𝐐𝐗𝑡 LN 𝐏𝑡+1 𝐖𝑘 + 𝒃𝑘

⊤

②𝑓agg 𝐒𝐙𝑡 , 𝐕𝐙𝑡 = 𝑓agg 𝐒𝐙𝑡+1, 𝐕𝐙𝑡+1 , each side of the equation is:

𝑓agg 𝐒𝐙𝑡 , 𝐕𝐙𝑡 = 𝐒𝐗𝑡𝐕𝐗𝑡 + 𝐒𝐏𝑡𝐕𝐏𝑡 = 𝐒𝐗𝑡𝐕𝐗𝑡 + 𝐒𝐏𝑡 LN 𝐏𝑡 𝐖𝑣 + 𝒃𝑣
𝑓agg 𝐒𝐙𝑡+𝟏 , 𝐕𝐙𝑡+1 = 𝑓agg 𝐒𝐙𝑡 , 𝐕𝐙𝑡+1 = 𝐒𝐗𝑡𝐕𝐗𝑡 + 𝐒𝐏𝑡 LN 𝐏𝑡+1 𝐖𝑣 + 𝒃𝑣

From ①𝑓aff 𝐐𝐗𝑡 , 𝐊𝐙𝑡 = 𝑓aff 𝐐𝐗𝑡 , 𝐊𝐙𝑡+1 , we derive 𝐀𝐙𝑡 = 𝐀𝐙𝑡+1  and 𝐒𝐙𝑡 = 𝐒𝐙𝑡+1

Simplifying conditions ①② , we obtain: 𝐐𝐗𝑡𝐖𝑘
⊤LN 𝐏𝑡

⊤ = 𝐐𝐗𝑡𝐖𝑘
⊤LN 𝐏𝑡+1

⊤ = 𝐐𝐗𝑡𝐖𝑘
⊤LN 𝐏𝑡 + ∆𝐏 ⊤

𝐒𝐏𝑡LN 𝐏𝑡 𝐖𝑣 = 𝐒𝐏𝑡LN 𝐏𝑡+1 𝐖𝑣 = 𝐒𝐏𝑡LN 𝐏𝑡 + ∆𝐏 𝐖𝑣

𝐀𝐙 = 𝑓aff 𝐐𝐗, 𝐊𝐙 =
𝐐𝐗 𝐊𝐗

⊤ 𝐊𝐏
⊤

D

(Dropped)



Our Method

𝐐𝐗𝑡𝐖𝑘
⊤LN 𝐏𝑡

⊤ = 𝐐𝐗𝑡𝐖𝑘
⊤LN 𝐏𝑡 + ∆𝐏 ⊤ ③

𝐒𝐏𝑡LN 𝐏𝑡 𝐖𝑣 = 𝐒𝐏𝑡LN 𝐏𝑡 + ∆𝐏 𝐖𝑣 ④
LN 𝐏 =

𝐏 − 𝝁𝐏
𝝈𝐏

⊙𝜶+ 𝜷

For the term LN 𝐏𝑡 + ∆𝐏 , it cannot be expressed directly in terms of LN 𝐏𝑡 and ∆𝐏.

Assumption of Distribution Invariance:
𝝁𝐏𝑡+∆𝐏 = 𝝁𝐏𝑡
𝝈𝐏𝑡+∆𝐏 = 𝝈𝐏𝑡

Assuming the distribution of prompts remains unchanged during training:

Relationship between LN 𝐏𝑡 + ∆𝐏  and LN 𝐏𝑡  using ∆𝐏 :

LN 𝐏𝑡 + ∆𝐏 =
𝐏𝑡 + ∆𝐏 − 𝝁𝐏𝑡+∆𝐏

𝝈𝐏𝑡+∆𝐏
⊙𝜶+ 𝜷 =

𝐏𝑡 + ∆𝐏 − 𝝁𝐏𝑡
𝝈𝐏𝑡

⊙𝜶+ 𝜷 =
𝐏𝑡 − 𝝁𝐏𝑡
𝝈𝐏𝑡

⊙𝜶+ 𝜷 +
∆𝐏

𝝈𝐏𝑡
⊙𝜶 = LN 𝐏𝑡 +

∆𝐏

𝝈𝐏𝑡
⊙𝜶

From LN 𝐏𝑡 + ∆𝐏 = LN 𝐏𝑡 +
∆𝐏

𝝈𝐏𝑡
⊙𝜶, simplify③④:

𝐐𝐗𝑡𝐖𝑘
⊤LN 𝐏𝑡

⊤ = 𝐐𝐗𝑡𝐖𝑘
⊤LN 𝐏𝑡

⊤ +
𝐐𝐗𝑡𝐖𝑘

⊤∆𝐏⊤

𝝈𝐏𝑡
⊙𝜶⊤ ⑤

𝐒𝐏𝑡LN 𝐏𝑡 𝐖𝑣 = 𝐒𝐏𝑡LN 𝐏𝑡 𝐖𝑣 +
𝐒𝐏𝑡∆𝐏𝐖𝑣

𝝈𝐏𝑡
⊙𝜶 ⑥

From⑤⑥: 𝐐𝐗𝑡𝐖𝑘
⊤ ∆𝐏⊤ = 𝟎

𝐒𝐏𝑡∆𝐏𝐖𝑣 = 𝟎

𝐐𝐗𝑡𝐖𝑘
⊤ ∆𝐏⊤ = 𝟎 ⑦

𝐒𝐏𝑡∆𝐏 = 𝟎 ⑧

It is sufficient to satisfy conditions ⑦⑧:

LN 𝐏 =
𝐏𝑡 + ∆𝐏 − 𝝁𝐏𝑡+∆𝐏

𝝈𝐏𝑡+∆𝐏
⊙𝜶+𝜷



Our Method

To achieve the following objective:

𝑓V𝑖T 𝐗𝑡 𝐏𝑡 = 𝑓V𝑖T 𝐗𝑡 𝐏𝑡+1
Specifically, this requires:

𝐅𝐙𝑡 = 𝐅𝐙𝑡+1

𝝁𝐏𝑡+∆𝐏 = 𝝁𝐏𝑡
𝝈𝐏𝑡+∆𝐏 = 𝝈𝐏𝑡

𝐐𝐗𝑡𝐖𝑘
⊤ ∆𝐏⊤ = 𝟎 ⑦

𝐒𝐏𝑡∆𝐏 = 𝟎 ⑧

𝑓aff 𝐐𝐗𝑡 , 𝐊𝐙𝑡 = 𝑓aff 𝐐𝐗𝑡 , 𝐊𝐙𝑡+1

𝑓agg 𝐒𝐙𝑡 , 𝐕𝐙𝑡 = 𝑓agg 𝐒𝐙𝑡+1, 𝐕𝐙𝑡+1

This ultimately leads to the following two 
conditions called consistency conditions.

Converting into two sufficient conditions:

Introducing a constraint on the prompt 
distribution's variation

(Dropped)



Our Method

Two-step optimization scheme:

1) Use the projection matrix 𝐁1 (∆𝐏⊤ = 𝐁1𝑷𝒢
⊤ ) to make ∆𝐏⊤ orthogonal to the subspace spanned by 𝐐𝐗𝑡𝐖𝑘

⊤;

2) Use the projection matrix 𝐁𝟐 (∆𝐏 = 𝐁2𝑷𝒢 ) to make ∆𝐏 orthogonal to the subspace spanned by 𝐒𝐏𝑡.

Computing 𝐁𝟏 and 𝐁𝟐 via null space:

For 𝐁1: SVD 𝐐𝐗𝑡𝐖𝑘
⊤ ⊤

𝐐𝐗𝑡𝐖𝑘
⊤ , let the matrix of right singular vectors corresponding to the 

singular values that are (or close to) zero be 𝐔1,0, then 𝐁1 = 𝐔1,0𝐔1,0
⊤

For 𝐁2: SVD(𝐒𝐏𝑡
⊤ 𝐒𝐏𝑡), let the matrix of right singular vectors corresponding to the singular values 

that are (or close to) zero be 𝐔2,0, then 𝐁2 = 𝐔2,0𝐔2,0
⊤

Finally, the update rule from gradient 𝐏𝒢 to update ∆𝐏 is given by:

∆𝐏 = 𝐁2𝐏𝒢𝐁1 = 𝐔2,0𝐔2,0
⊤ 𝐏𝒢 𝐔1,0𝐔1,0

⊤ ⑨

𝝁𝐏𝑡+∆𝐏 = 𝝁𝐏𝑡
𝝈𝐏𝑡+∆𝐏 = 𝝈𝐏𝑡

The constraint on the distributional 

variation of the prompt
is achieved by introducing a loss function ℒLN:

1) ⑨: Applying null space 

projection to the gradient

2) ⑩: Constraining the 

distribution of the promptℒLN = 𝝁𝐏𝑡+1 − 𝝁𝐏𝑡 1
+ 𝝈𝐏𝑡+1 − 𝝈𝐏𝑡 1

⑩



Our Method

The Transformer architecture generally employs multi-head attention, so the 

derived consistency conditions ⑦⑧ need to be extended to multi-head attention.

𝐐𝐗𝑡𝐖𝑘
⊤ ∆𝐏⊤ = 𝟎 ⑦

𝐒𝐏𝑡∆𝐏 = 𝟎 ⑧

𝐐𝐗𝑡.ℎ𝐖𝑘.ℎ
⊤ ∆𝐏⊤ = 𝟎

𝐒𝐏𝑡.ℎ∆𝐏 = 𝟎
∀ℎ ∈ 1, 2,⋯ , 𝐻 ,

𝛀1,𝑡 = 𝐐𝐗𝑡.1𝐖𝑘.1
⊤ ;⋯ ; 𝐐𝐗𝑡.𝐻𝐖𝑘.𝐻

⊤ , representing the concatenated 

matrices 𝐐𝐗𝑡.ℎ𝐖𝑘.ℎ
⊤ from each attention head.

𝛀2,𝑡 = 𝐒𝐏𝑡.1;⋯ ; 𝐒𝐏𝑡.𝐻 representing the concatenated 𝐒𝐏𝑡.ℎ matrices 

from each attention head.

Using block matrix operations, the consistency conditions for all 

attention heads can be expressed as follows:

𝛀1,𝑡∆𝐏
⊤ = 𝟎

𝛀2,𝑡∆𝐏 = 𝟎

Assuming there are 𝐻 attention heads, let the ℎ-th attention head for ℎ ∈

[1, 2,⋯ , 𝐻] have its respective components 𝐐𝐗𝑡.ℎ,𝐖𝑘.ℎ, 𝐒𝐏𝑡.ℎ. To satisfy the 

consistency conditions across all attention heads, we define:

The prompt 

distribution 

constraint loss 

function ℒLN =

𝝁𝐏𝑡+1 − 𝝁𝐏𝑡 1
+ ฮ

ฮ

𝝈𝐏𝑡+1 −

𝝈𝐏𝑡 1
remains 

independent of the 

number of attention 

heads, so no further 

extension is required.



Experiments

Model used:  

a) ViT-Base16 model pre-trained on ImageNet-21K, with prompts of length 4 inserted into all ViT

layers (referred to as VPT);  

b) CLIP model, with prompts added to the image encoder, while the text encoder is frozen.  

Evaluation benchmarks:  

Four class-incremental test benchmarks, including 10-task CIFAR-100, 20-task CIFAR-100, 10-task 

ImageNet-R, and 10-task DomainNet-200.  

Evaluation metrics:  

Accuracy (Acc., the higher, the better) and Forgetting (the lower, the better), with the average 

results of three runs reported. Accuracy is the primary focus metric. 



Experiments

“-Seq”: baseline

“-NSP2”: our method

Comparison with the baseline using VPT and CLIP models

Accuracy increased
by 4%~10%
Forgetting decreased
by 9%~17%。

Accuracy increased
by 6%~9%
Forgetting decreased
by 3%~17%。

The change curve of accuracy as the number of tasks increases

Our method consistently
outperforms the  baseline,
with its advantages becoming
more pronounced over time.

"Upper-bound": Jointly training all tasks at once, can be 
considered the upper bound of performance in continual learning.



Experiments

Comparison with existing methods based on ImageNet-21K pre-trained VPT, numbers following ± representing the standard deviation

Our method Achieves state-of-the-art performance on all evaluation benchmarks.



Experiments

𝐁2𝐁1 ℒLN

Ablation study on 𝐁1, 𝐁2 and ℒLN

The first consistency condition, the orthogonal subspace projection matrix 𝐁1, has the most 

significant impact on performance. However, 𝐁2 and ℒLN are also indispensable. The highest 

accuracy and lowest forgetting rate are achieved only when all three components are used 

together.



Experiments

As the number of learning tasks increases, if the issue of training interventions becomes more 

severe, the model's loss on the old task data will be higher. Conversely, if training interventions 

can be minimized or eliminated, the model's loss on the old task data will not increase.

The proposed method maintains almost no change in the loss on old task data, demonstrating its 

ability to eliminate training interventions, thereby preventing forgetting.

The loss curves on the training data of the 1st and 2nd tasks as the number of learning tasks increases, comparing 

the proposed method (VPT-NSP2) with the baseline method (VPT-Seq).

Ours

Baseline

Ours

Baseline



Experiments

The stability-plasticity trade-off in the proposed method is represented by ∆𝐏 = [

]

𝜂2𝐁2 + (

)

1 −

𝜂2 𝐈 𝐏𝒢 𝜂1𝐁1 + 1 − 𝜂1 𝐈 , where the orthogonal subspace projection matrices 𝐁1, 𝐁2 are weighted 

and fused with the identity matrix 𝐈 . The parameters 𝜂1, 𝜂2 ∈ [0, 1] control the weights, allowing 

for the adjustment of the trade-off between plasticity and stability.

When the weights 𝜂1, 𝜂2 are set to the same value, denoted as ҧ𝜂, the changes in accuracy and forgetting rate 

as ҧ𝜂 decreases from 1.0 to 0.8 are shown in the following figure.

Accuracy is influenced by both stability and plasticity, and the best performance is achieved when 

a good balance between the two is attained. An increase in plasticity means a weakened ability to 

retain knowledge from old tasks, which results in a gradual increase in the forgetting rate.
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Thank You for Watching!
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