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The Interior Point Method

Problem

We focus on solving the following NLP (1):

mp 9
st. h(x)=0 (1)
x>0
where the functions f: R” — R and h: R" — R™ are all assumed to be
twice continuously differentiable.
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The Interior Point Method
The Classic IPM

By introducing a decreasing sequence of parameters i converging to zero,
the perturbed Karush-Kuhn-Tucker (KKT) conditions can be represented
as:

VAX)+ A Vh(x) —z=0  h(x)=0

diag(z)diag(x)e = pe x,z>0 (2)

A one-step Newton's method is employed to solve such a system, aiming
to solve systems of linear equations (3).

V2Ax) + ATV?h(x) Vh'(x) -1 Ax
Vh(x) AN = —F(x, A, 2)
diag(z2) diag(x)| | Az (3)

-

J

The IPM commences with an initial solution (x%, A%, 2%) such that
X0, 2% > 0. At iteration k, the linear system (3) defined by the current
iterate (xX, Ak, Z¥) is solved.
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The Interior Point Method
The Classic IPM

Algorithm 1 The classic IPM
Inputs: An initial solution (2, A%, 2%), o € (0,1), k < 0
Outputs: The optimal solution (z*, \*, 2*)

1: while not converged do

2:  Update ui*
3:  Solve the system J* [(Az)T, (AXF)T, (AZF)T] T = _Fk
4:  Choose o via a line-search filter method
5
6
7

(xk+1,)\k+1,zk+1) — ($k7)\k,zk) +O¢k(Axk,A)\k7Azk)
k—k+1
end while

@ Solving linear systems is the main computational bottleneck.
o IPM is difficult to be warm-started.

Can we leverage L20 techniques to expedite IPMs for NLPs?
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The Interior Point Method

Approximating Solutions to Linear Systems
To avoid high computational costs, the least squares problem (4) is
employed to obtain the approximate solution of the IPM linear system.

m}jn;HJkwa FkH2 (4)

This perspective is similar to the inexact IPM?.

Assumption 1

At iteration k, we could identify some y¥ such that
|4+ | < n [ ] /i (5)
¥l < (1 + 0 +n) | Fo(X, A% 2. (6)

where 1 € (0,1) and Fo(xK, A, ZX) denotes F(xX, \¥, z¥) with p = 0.

1Stefania Bellavia. “Inexact interior-point method". In: Journal of Optimization Theory and Applications 96 (1998),
pp. 109-121.
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The Interior Point Method

Approximating Solutions to Linear Systems

To satisfy Assumption 1, the approximate solution y* has to be bounded
and accurate enough, regardless of whether J¥ is invertible.

Proposition 1

If (xk, Ak, ZX) is generated such that Assumption 1 is satisfied, let
(x*, \*, Z*) denote a limit point of the sequence {(x*, A\, Z€)}, then
{(xk, Ak ZK)} converges to (x*, \*, z*) and Fo(x*, \*,z*) = 0.
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The IPM-LSTM Approach

Architecture
LSTM networks are considered suitable for solving the least squares

problem due to the resemblance between LSTM recurrent calculations and

iterative algorithms.

ye = LSTMy ([ ve1, (49T (Fyemr + F9) ). (7)
e
1 T
LSTM Cell |—>I |_>"‘ LSTM Cell
g ' T\

Figure 1: The LSTM architecture for solving the least quares problem.
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The IPM-LSTM Approach

Model Training

Base on the least squares problem, we propose a new self-supervised loss
function:

Me

1 111 2

: k

i 3 (k2 il
M k=1 t=1 M

where the subscript M indicates that the corresponding term is associated

with instance M. Truncated backpropagation through time is employed to
mitigate memory issues.

IPM-LSTM

l
LSTMcell LSTMcell
i, - X
minyE\J‘yw‘r F‘H?H LSTM
new iterate

Figure 2: An illustration of the IPM-LSTM approach.
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Experiments

Experimental Settings

Datasets:

The dataset used in our work includes randomly generated benchmarks
as well as real-world instances from Globallib. These benchmarks
encompass convex QPs, convex QCQPs, nonconvex QPs, and simple
non-convex programs.

234

Baselines:
o Traditional optimizer: OSQP, IPOPT.
@ L20 algorithms : NN, DC3, DeepLDE, PDL, LOOP-LC, H-Proj.

2Jieqiu Chen and Samuel Burer. “Globally solving nonconvex quadratic programming problems via completely positive
programming”. In: Mathematical Programming Computation 4.1 (2012), pp. 33-52.

3Priya L Donti, David Rolnick, and J Zico Kolter. “DC3: A learning method for optimization with hard constraints”. In
(2021).

4Enming Liang, Minghua Chen, and Steven Low. “Low complexity homeomorphic projection to ensure neural-network
Solution feasibility for optimization over (non-) convex set”. In: (2023).
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Experiments
QP

1
min §XTQ0X—{— Pg X

xeR"
T .
st. pjx<gqj j=1---,1 (8)
T .
pj X = gqj j=I1+1--- m
xk u j
T <xi < X i=1---,n
Table 1: Computational results on convex QPs.
Method End-to-End IPOPT (warm start) T_Tma(l ) @ (?z_nl{n , +
Obj. | Maxineq. | Meanineq. | Maxeq. | Meaneg. | Time(s)) | Ite.] Time(s)) ¢ e/ lime
Convex QPs (RHS)
0S@P  -29.176  0.000 0.000 0.000 0.000 0.009 - - - -
IPOPT  -29.176  0.000 0.000 0.000 0.000 0642 | 125 - - -
NN 26787 0.000 0.000 0.631 0.235 <0.001 | 105 0560 0560  16.0%/12.8%
DC3  -26720  0.002 0.000 0.000 0.000 <0001 | 102 0535 0535 18.4%/16.7%
DeepLDE  -3.697 0.000 0.000 0.000 0.000 <0.001 | 125 0648 0.648  0.0%/-0.9%
PDL  -28559 0421 0.122 0.024 0.000 <0.001 | 97 0514 0514 22.4%/19.9%
LOOP-LC  -28512  0.000 0.000 0.000 0.000 <0.001 | 108 0565 0565 13.6%/12.0%
H-Proj 23257  0.000 0.000 0.000 0.000 <0001 | 112 0605 0.605 10.4%/5.8%
IPM-LSTM -29.050  0.000 0.000 0.002 0.001 0.175 72 0370 0545 42.4%/15.1%
Convex QPs (ALL)
0SQP  -33.183  0.000 0.000 0.000 0.000 0.009 - - - -
IPOPT  -33.183  0.000 0.000 0.000 0.000 0671 | 129 - - -
IPM-LSTM -32.600  0.000 0.000 0.003 0.001 0.195 8.3 0426 0.621  357%/1.5%
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Experiments

QP
Table 3: Computational results on non-convex QPs.
IPOPT IPM-LSTM IPOPT (warm-start) Total Gain
Instance Time (s)  (lte Time)
Obj. Ite. Time(s) | Obj.  Max Vio. Time(s) | Obj. Ite.  Time (s) -
qpl 0.001 52.0 0.707 0.045 0.008 0.017 0.001 42.0 0.559 0.576 19.2%/18.5%
qp2 0.001 69.0 0.674 0.034 0.008 0.029 0.001 40.0 0.347 0.376 42.0%/ 44.2%
st_rvl -58.430  215.0 0.955 -34.563 0.000 0.009 -58.867  168.0 0.626 0.635 21.9%/33.5%
st_rv2 -67.083  190.8 0.956 -30.955 0.000 0.011 -67.083 1205 0.482 0.494 36.8%/38.1%
st_rv3 0.000 55.0 0.781 0.818 0.000 0.017 0.000 47.0 0.616 0.634 14.5%/18.8%
st_rv7 -132.019 449.0 2.445 -61.428 0.000 0.016 -131.756  162.0 0.705 0.721 63.9%/70.5%
st_rv9 -126.945 6550 3457 -58.415 0.000 0.026 | -127.652 408.0 1.830 1.856 37.7%146.3%
qp30_15_1_1 37.767 16.0 0.198 37.787 0.002 0.021 37.767 9.0 0.083 0.104 43.7%147.5%
Max Vio. denotes the maximum constraint violation.
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Experiments
Convex QCQP
min
xeRM
s.t.

1
EXT Qox + pg x

x" Qx+ pf x< g

-
pPj X = qj
Xk <x <V

j:]-?"':I
j=141,,m

i=1,---,n

Table 2: Computational results on convex QCQPs.

End-to-End IPOPT (warm start) Total Gain
Method Time ()¢ (Ite./ Time) |
Obj. | Maxineq. | Meanineq. | Maxeq. | Meaneq.| Time(s)] | Ite.| Time(s)| .
Convex QCQPs (RHS)
IPOPT -39.162 0.000 0.000 0.000 0.000 1.098 12.5 - - -
NN -2.105 0.000 0.000 0.552 0.169 <0.001 121 1.311 1.311 3.2%1-19.4%
DC3 -35.741 0.000 0.000 0.000 0.000 0.005 9.6 1.051 1.051 20.7%/4.8%
DeepLDE  -15.132 0.000 0.000 0.000 0.000 <0.001 115 1.222 1.222 8.0%/-11.3%
PDL -39.089 0.005 0.000 0.015 0.005 <0.001 8.9 1.013 1.013 28.8%/7.7%
H-Proj  -36.062 0.000 0.000 0.000 0.000 <0.001 9.8 1.070 1.070 21.6%/2.6%
IPM-LSTM -38.540 0.000 0.000 0.004 0.001 0.205 8.0 0.825 1.030 36.0%/6.2%
Convex QCQPs (ALL)
IPOPT -39.868 0.000 0.000 0.000 0.000 0.801 124 - - -
IPM-LSTM -38.405 0.004 0.000 0.001 0.000 0.203 83 0.507 0.710 33.1%/11.4%
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Experiments

Simple Non-convex Program

Table 8: Computational results on non-convex programs

End-to-End IPOPT (warm start) Total Gain
Method Ti . Ite) Ti 1
Obj. | Max ineq. | Meanineq. | Maxeq.| Meaneq.| Time(s)| | Ite.| Time(s)| ime (s) (Ite/ Time)
Non-convex Programs (RHS): n = 200, mineq = 100, 1¢q = 100

IPOPT -22.375 0.000 0.000 0.000 0.000 0.717 13.1 - - -
DC3 -20.671 0.000 0.000 0.000 0.000 <0.001 10.9 0.603 0.603 16.8%/15.9%
NN -20.736 0.000 0.000 0.632 0.235 <0.001 11.0 0.607 0.607 16.0%/20.7%
DeepLDE  -20.074 0.000 0.000 0.000 0.000 <0.001 10.5 0.576 0.576 19.8%/19.7%
PDL -21.859 0.589 0.167 0.026 0.000 <0.001 10.9 0.600 0.600 16.8%/16.3%
LOOP-LC  -21.932 0.000 0.000 0.000 0.000 <0.001 102 0.558 0.558 22.1%/22.2%
H-Proj -19.097 0.000 0.000 0.006 0.000 <0.001 115 0.634 0.634 12.2%/11.6%
IPM-LSTM  -22.213 0.000 0.000 0.002 0.001 0.175 9.5 0.533 0.708 27.5%/1.3%

Non-convex Programs (ALL): . = 200, mineq = 100, 1mq = 100

IPOPT -25.1043 0.000 0.000 0.000 0.000 0.768 143 - - -

IPM-LSTM  -20.288 0.000 0.000 0.006 0.002 0.195 12.1 0.639 0.834 15.4%1-8.6%
Non-convex Programs (RHS): 7 = 100, mineq = 50, meq = 50

IPOPT -11.590 0.000 0.000 0.000 0.000 0.289 129 - - -
DC3 -10.660 0.000 0.000 0.000 0.000 <0.001 11.6 0.259 0.259 11.6%/10.4%
NN -10.020 0.000 0.000 0.350 0.130 <0.001 114 0.253 0.253 11.6%/12.5%
DeepLDE 4.870 0.000 0.000 0.008 0.000 <0.001 13.1 0.294 0.294 -1.6%/-1.7%
PDL -11.385 0.006 0.002 0.001 0.000 <0.001 9.6 0.207 0.207 25.6%128.4%
LOOP-LC  -11.296 0.000 0.000 0.000 0.000 <0.001 10.1 0.217 0217 21.7%/24.9%
H-Proj -9.616 0.000 0.000 0.000 0.000 <0.001 11.3 0.252 0.252 12.4%/12.8%
IPM-LSTM  -11.421 0.000 0.000 0.002 0.001 0.044 8.9 0.181 0.225 31.0%/22.1%

Non-convex Programs (ALL): 2 = 100, mineq = 50, meq = 50

IPOPT -12.508 0.000 0.000 0.000 0.000 0.305 132 - - -

IPM-LSTM  -12.360 0.000 0.000 0.001 0.000 0.044 8.0 0.149 0.193 39.4%/36.7%
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Experiments
Performance Analysis of IPM-LSTM
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Conclusions

Our work can be summarized as follows:
@ Approximating Solutions to Linear Systems via LSTM.
@ A new self-supervised loss function.

@ A new learning-based method based on IPM that can simultaneously
keep feasibility and optimality.
@ Two-Stage Framework.

@ Better performance in end-to-end solutions and warm-starting IPOPT.
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