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What are Counterfactual Explanations?

Counterfactual explanation: “closest” point \

on the other side of the decision boundary
Favorable Region (y=1)

What can | do to get approved?

Counterfactual

@ Decision boundary

Original Instance @

\Unfavorable Region (y=0) [Wachter ot al ,17])

KHOW faithfully can one reconstruct a model using counterfactual explanations?\
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Training a surrogate model using all the queried datapoints (y=0/1)
and one-sided counterfactuals (for datapoints with y=0)

ion boundary
Surrogate model’s decision boundary
: ,;)qs Wiws, | |OQueries
y ;e e 4 Counterfactuals
“e= || (one-sided)

Counterfactuals as ordinary
labelled instances?
Decision boundary shift issue

1 .i-‘avorable region

~ Unfavorable region *

Question: Can we improve model reconstruction specifically leveraging the fact that
the counterfactuals are quite close to the boundary?

Main Contribution:

Novel Model Reconstruction Strategies Using Counterfactuals
With Theoretical Guarantees From Polytope Theory

Related Works: [Aivodji et al.”20][Wang et al.’22]
Other Privacy + CF: [Pawelczyk et al.”23][Goethals at al.’23] ][Yadav et al.’23]
Model extraction in other settings: [Gong et al.”20] [Milli et al.”19]



Main Results

1. Convex Decision Boundaries and Closest Counterfactuals

Target S Target boundary .
Boundary : m(x)=0.5 O Queries
A Counterfactuals
/¥~ Tangent )
c (one-sided)
Counterfactual :
o Polytope
O approximation

Theorem 3.2. Let m be the target binary classifier whose decision boundary is convex (i.e., the
set {x € [0,1]¢ : |[m(x)] = 1} is convex) and has a continuous second derivative. Denote by

M, the convex polytope approximation of m constructed with n supporting hyperplanes obtained
through i.i.d. counterfactual queries. Assume that the fidelity is evaluated with respect to D,.s which

is uniformly distributed over [0, 1]%. Then, when n — oo the expected fidelity of M,, with respect to
m is given by

E [Fidm,Dmf(Mn)] —1—e¢ )

where e ~ O (n_ ﬁ) and the expectation is over both M,, and Dyef.

Theoretical guarantees on exact volume approximation
using counterfactuals leveraging polytope theory
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Main Results

2. ReLU Networks and Closest Counterfactuals

Continuous Piece-Wise Linear (CPWL) Functions

Theorem 3.6. Let m be a target binary classifier with ReLU acti-

vations. Let k(€) be the number of cells through which the decision
boundary passes. Define {H, };—1 k(e) 10 be the set of affine pieces
of the decision boundary within each decision boundary cell. Let
v;i(€) = V(G g,, (H;)) where V (.) is the d—dimensional volume

(i.e., the Lebesgue measure) and G, 4 (.) is the inverse counter-
factual region w.r.t. m and the closest counterfactual generator g,,.
Then the probability of successful reconstruction with counterfactual
queries distributed uniformly over [0, 1]¢ is lower-bounded as

IP [Reconstruction] > 1 — k(e)(1 — v™(e))" (2)

where v*(€) = min;—y (e vi(€) and n is the number of queries.




Main Results

3. Beyond Closest Counterfactuals

Theorem 3.10. Let the target m and surrogate m be ReLU classifiers such that m(w) = m(w) for
every counterfactual w. For any point x that lies in a decision boundary cell,

VA (Ym + Y )€ holds with probability p > 1 — k(e)(1 — v*(e))™

m(z) —m(z)| <
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CCA Strategy: Unique Loss Function to Clamp Counterfactuals
From One Side and Mitigate the Decision Boundary Shift Issue
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Experimental Validation:
Fidelity Comparison Over Several Benchmark Datasets

Architecture known (model 0) Architecture unknown (model 1)
Dataset ]Dtest II))uni ID)test ID)uni
Base. CCA Base. CCA Base. CCA Base. CCA
Adult In. 91+43.2 94+4-3.2 84+3.2 91+3.2 91+4.5 94+4-3.2 84+3.2 90+3.2
COMPAS 92+43.2 96+42.0 94+41.7 96+2.0 91+8.9 96+3.2 94+42.0 94+8.9
DCCC 89+8.9 99+4-0.9 95+42.2 96+1.4 90+7.7 97+4.5 95+2.2 95+11.8
HELOC 91+4.7 96+4-2.2 92+42.8 94424 90+7.4 95+45.5 91+43.3 93+3.2
CCA provides high-fidelity model reconstruction
Comparison With Two-Sided Counterfactuals
Architecture known (model 0) Architecture unknown (model 1)
Dataset Dtest ]Duni Dtest ]D)uni
Base. Dual. CCAl1l CCA2 Base. Dual. CCAl CCA2 Base. Dual. CCAl1 CCA2 Base. Dual. CCAl1 CCA2
DCCC n=100 | 095 099 094 099 | 090 095 092 097 | 092 098 093 098 (0.8 092 0.8 0.93
n=200 | 096 099 098 099 | 090 096 095 098 |09 099 096 099 (0.8 094 094 0.96
HELOC n=100 | 094 097 090 098 | 091 098 0.84 098 | 092 091 090 096 | 0.88 092 084 0.96
n=200 | 096 098 092 098 | 093 098 0.8 099 |095 092 091 097 |093 094 0.88 0.97

Baselines: [Aivodji et al.’20][Wang et al.’22]



Additional Experiments

Other Counterfactual Generation Techniques

Table 2: Fidelity achieved with different counterfactual generating methods on HELOC dataset.

Target model has hidden layers with neurons (20, 30, 10). Surrogate model architecture is (10, 20).

Different Lipschitz Constants

HELOC - Architecture known

- 37.341 (3.830) = 124.902 (22.515)
= 428.546 (52.714)

HELOC - Architecture unknown

- 37.341(3.830) = 124.902 (22.515)
= 428.546 (52.714)

Fidelity over Dx Fidelity over Dy o o
09 09
CF method n=100 n=200 =200 KF/' ﬁ‘_"
08 08
Basee. CCA Base. CCA Base. CCA Base. CCA o 50
MCCF L2-norm 91 95 93 96 91 93 93 95 06 0.6
0 100 200 300 400 100 200 300 400
MCCF L1-norm 93 95 94 96 89 92 91 95 ‘
DiCE Acnopable 93 54 95 95 S0 91 93 94 Query size Query size
1-Nearest-Neightbor 93 95 94 96 93 93 94 95
ROAR [Upadhyay et al., 2021 91 92 93 95 87 85 92 92 H H
C-CHVAé [gawe)lrc;'yk et al 20;0] 77 30 78 82 S0 89 85 78 lefe rent MOdeI ArCh Itectures
! Dataset: HELOC - Fidelity over D
Target archi. = 100(20’10) 200 105)20’10’5) 200 1(02(? ’20,10,5)200
" i WO /Pinrat N . ) n= n= n= n= n= n=
g led  MCCFL2 o a3  MCCFLI 5 Je3 DICE Ktionable o led -0 g a3 ROAR Surrogate archi. | Base. CCA Base. CCA| Base. CCA Base. CCA| Base. CCA Base. CCA
. 0.0s !
) - 10s (20,10) 0.90 094 091 095|090 094 092 095|098 0.99 098 0.99
4 4 4 4 = \ CFs (20,10,5) 0.88 092 092 095|089 0.92 0.92 0.95| 098 0.98 098 0.99
(20,20,10,5) 0.87 093 091 093|087 0.89 091 0.94| 098 098 098 0.98
3 3 3 3 31
z Dataset: HELOC - Fidelity over Dyy;
- 2 5 2! 2 N Target archi. — (20,10) (20,10,5) (20,20,10,5)
n=100 n=200 n=100 n=200 n=100 n=200
3 Surrogate archi. | Base. CCA Base. CCA| Base. CCA Base. CCA| Base. CCA Base. CCA
11 1 1 1 11 1
(20,10) 092 092 094 095|091 091 094 0.95| 098 0.98 0.99 0.99
oLl U ol N1 | |- ol | (20,10,5) | 091 090 094 093] 091 0.89 093 0.94] 097 097 098 0.9
000204 0608 10 000204 C6 08 10 0002040608 20 00C204 060810 000204 06 0.8 10 (20,20,10,5) | 091 091 0.93 0.94] 091 0.87 093 092] 097 0.97 098 0.98

Taget prediction Target peecctian Targes precdiction

Taget prediction

Target precctian

CCA mostly outperforms baselines and gives high-fidelity model reconstruction!

Potential defenses: (i) Noisy Counterfactuals, or (ii) Robust Counterfactuals
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Unfavourable region (y=0)

@ Original instance
V)

Decision boundary

Counterfactual

Favourable region (y=1)

Definition: A counterfactual explanation for a given instance z is a
point z such that m(z) # m(z) (i.lies on the opposite side of the
decision boundary), selected based on some criteria.

The closest counterfactual is the counterfactual which is closest to
x, under some distance metric.

AP

Machine Leaning
Model m(x)

User/Adversary

How faithfully can one reconstruct a model
using counterfactual explanations?

[Create attack set p }—{ Query “m” with D for labels +CFs | —{Train *ia” on D)

. Target model’s decisi
Surrogate model’s de

boundary
be

Counterfactuals treated as
ordinary labelled instances?
Boundary shift issue

Unfavorable region

Question: Can we improve model reconstruction using
counterfactuals specifically leveraging the fact that the
counterfactuals are quite close to the boundary?

Main Contribution:
Novel Model Reconstruction Strategies & Fundamental Limits

Related Works: [Aivodji et al20][Wang et al.’22][Yadav et al. 23]
Other Privacy + CF: [Pawelczyk et al.’23][Goethals at al.’23]
Model extraction: [Gong et al.’20] [Milli et al."19]

MAIN RESULTS

1. Convex Decision and Closest C

D as OQueries
4 Counterfactuals
(one-sided)

Polytope
approximation

Tl i on volume app!
using counterfactuals leveraging polytope theory

Theorem 3.2. Let m be the target binary classifier whose decision boundary is convex (Le., the
set {z € [0.1] [mix)] = 1} is convex) and has  continuous second derivative. Denote by
M, the convex polytope of m constructed with n supporting hyperplanes obtained
through Lid. counterfacrual queries. Assume that the fideliy is evaluaied with respect 10 Dy which
is uniformly distributed over [0, 1). Then, when n. — o the expected fidelity of M,, with respect to
mis given by

Fidum, o (Ma)| =1-¢ [)]

where ¢ ~ o( 7+ and the expectation is over both M, and Dy

Convex Concave

n Regio

vex Lipschitz
RelLu Networks

Queries

2. ReLU Networks and Closest Counterfactuals

Continuous Piece-Wise Linear (CPWL) Functions

Theorem 3.6. Let m be a target binary classifier with ReLU acti-
vations. Let k(c) be the number of cells through which the decision
‘boundary passes. Define {E5;};,. x(c) 10 be the set of affine pieces

of the decision boundary within each decision boundary cell. Let
vi(€) = V(Gyn,g,, (H;)) where V/(.) is the d—dimensional volume
(i.e., the Lebesgue measure) and G, g, (.) is the inverse counter-
Jactual region w.r. m and the closest counterfactual gencrator g,

Then the probability of successful reconstruction with counterfactual
queries distributed uniformly over 0, 1] s lower-bounded as

P [Reconstruction] > 1 — k(e)(1 — v*(€))" @
where v*(€) = min_.,.. x(c) vi(c) and n is the number of queries.
3. Beyond Closest Counterfactuals

Theorem 3.10. Let the target m and surrogate i be ReLU classifiers such that m(w) = i(w) for
every counterfactual w. For any point  that lies in a decision boundary cell, m(z) — m(z)] <
Vd(7m + )€ holds with probability p > 1 — k{€)(1 — v(€))".
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ALGORITHM & EXPERIMENTS

Clamping Loss

— Functio
Lu(m(@), ye) = 1 [ue = 0.4, 10(z) < H{L(n(), K) — h(K))+ 1 [ye £ 0.5(L(m(). ye))
Counterfactuals
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Fidelity Comparisons
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"Architecture known (model 0) ‘Architecture unknown (model 1)
Dataset Dient Diai Diest D

Base. CCA_ Base. CCA | Base. CCA __ Base. CCA

Adultin_| 9132 04X32 84%32 91+32 | 91445 0432  84%32  90%32
COMPAS | 92432 9620 94=17 9620 | 91489  96+32 94+89
DCCC | 89+89 9909  95+22  O6+14 | 90+£77 97+45 05422 954118
HELOC | O1£47 96£22 92528 9424 | 90£74 95£55 OIE33 93432
omparison with DualCFX. Legend: Base.-Baseline model based on [Aivodsi et al., 2020, Dual-DualCFX,

‘with one-sided counterfactuals, CCA2=CCA with counterfactuals from both s
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o %% % x »onono» CCA outperforms baselines and gives
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Reterences:
210, Avodi A Boot, and. Gambs 020,
[2] Y. Wang, H. Qjan, and C. i I 2022.
[3] C. Yadav, M. Moshkovitz, and K. Chaudh ), 2023.

4] M. Pawelayk, K. Lokkara, and . Neel
. £ i 5. Dutta.

n oML 2023

https://arxiv.org/abs/2405.05369

https://github.com/pasandissanayake/mo

del-reconstruction-using-counterfactuals

Broa

Author Contacts:
pasand@umd.edu, sanghamd@umd.edu

der Implications on the Interplay Between Explainability & Privacy


mailto:pasand@umd.edu
mailto:sanghamd@umd.edu
https://arxiv.org/abs/2405.05369
https://github.com/pasandissanayake/model-reconstruction-using-counterfactuals
https://github.com/pasandissanayake/model-reconstruction-using-counterfactuals

