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From few-shot to
many-shot
In-context learning

(ICL)




From few-shot to many-shot ICL

>60K lines of code

Z| >1.4M words
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Gemini 1.0 Pro GPT-4 Turbo Claude 3 Gemini 1.5
32K 128K 200K 2M

Context lengths of leading foundation models compared with Gemini 1.5’s 2 million token capability
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https://blog.google/technology/ai/google-gemini-update-flash-ai-assistant-io-2024/#gemini-model-updates

From few-shot to many-shot ICL

How many shots is “many-shot”?

Many-Shot ICL: Context Length versus Number of Shots
" Best-Performing Shots
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From few-shot to many-shot ICL

Does many-shot ICL improve performance? Yes!

Task Performance in %
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Many-shot |CL
examples




Machine translation on low-resource languages

Beating SOTA systems using many-shot ICL.

Test chrF2++ (%)

Many-shot ICL: Machine Translation

English » Bemba
Bl . English —» Kurdish
40
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Logistics Planning
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Gemini 1.5 Pro
Gemini 1.5 Pro (Apr 2024)
-=-= GPT-4 (Valmeekam et. al, 2024)
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Code verifier

Code verifier without fine-tuning!

Code Verifier: Best-of-4 Performance 0.5 Code Verifier: Conditional Probabilities
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Many more examples of effective many-shot ICL:
e.g., Planning, Summarization. See paper for details!



Many-shot learning
without human-written
rationales




Human-written rationales or demonstrations can
be expensive to collect... can we do without?

Reinforced ICL: use model-generated rationales

Compile as many-shot

Select rationales that produce .
in-context examples

the correct final answer

-

o

p g A
T LUMERNLE Problem: ...
)/ - Rationale: ...
Generate multiple rationales Problem: ...
for each training problem - Rationale: ...
Problem: ...
% — Rationale: ...
(S )

*called "reinforced" because of equivalence to expectation-maximization RL algorithm



Human-written rationales or demonstrations can
be expensive to collect... can we do without?

Unsupervised ICL: get rid of rationales/solutions entirely!

Preamble

Long list of
unsolved problems

Instruction

Short list of
problems with
solutions

p

You will be provided Problems similar to the ones below: }
&
" Problem:

robiem: .. Many-shot to teach
Problem: ...
. the problem space

\Problem.

Solutions. When you respond, respond only with the Solution of the final

e : : : :
Now, | am going to give you a series of demonstrations of math Problems and
\Problem, thinking step by step.

Problem: ...

Solution: Few-shot to teach

the format

Problem: ...




Problem-Solving: Hendrycks MATH & GSM8K

Reinforced and Unsupervised ICL can outperform  The Hendrycks MATH prompts transfer well to
ICL with human-written solutions! GSMB8k (another math dataset)
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GSM8K (Transfer using MATH prompts)
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Algorithmic and Symbolic Reasoning: Big-Bench Hard

Generally: Reinforced > Unsupervised > Human-written
e with greater improvement for more shots2
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Analyzing
many-shot ICL




Many-shot ICL can overcome pre-training biases

Test Accuracy

Previous work (Kossen et al, 2023) suggest that ICL has difficulty unlearning biases
derived from pre-training data...

Sentiment Analysis (FP): Replacement Labels

100% Default Flipped Abstract
(original) (rotated)
80% negative neutral A
neutral positive B
Abstract labels
60% Default labels positive negative C
Flipped labels
23 25 27 29 211

Number of Shots (K)

...but with enough shots, new labels eventually approach performance of original labels



Binary Linear Classification in High Dimensions

Many-shot ICL nearly matches strong baseline (k-nearest neighbors)

Gemini 1.5 Pro k-Nearest Neighbors ~ ----- Random
Classification (N = 16) Classification (N = 32) Classification (N = 64)
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Sequential Parity (20 digits)

Does the binary input sequence so far
contain even or odd number of 1s?

Input: 10110001110000100111
Label: Odd Odd Even Odd Odd Odd Odd Even
0Odd Even Even Even Even Even Odd Odd Odd
Even Odd Even

believed to be a fundamental limitation of
self-attention (Chiang and Cholak, 2022)

Many-shot ICL improves monotonically until
2M3 examples!
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And outperforms a GPT-2 sized model trained from
scratch on 20x more data



Many-shot ICL can have similar performance to SFT
(translation task)

Base Model Supervised FT Many-Shot ICL
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e |ICL has no training cost but potentially higher inference cost (can mitigate with context caching)



Many-shot ICL can be sensitive to example ordering
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Comparison of frontier models

Gemini 1.5 Pro GPT-4-Turbo Claude-3-Opus

Gemini 1.5 Pro GPT-4-Turbo Claude-3-Opus —e— Gemini 1.5 Flash

Translation: English - Bemba

Translation: English = Kurdish
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Varying levels of benefit from many-shot ICL



Increasing Context Length or More Information?

Test chrF2++ (%)
(English - Bemba)

i Distinct examples

I Repeated examples (N x 25 ex.)

25

50 125 250 500 1000
Number of Shots (K)

Many-shot
performance with
distinct examples
vs repeating the
same 25 examples
N times on
low-resource MT.



Long-context scaling laws may not predict ICL performance

Negative Log-Likelihood on Ground-Truth Solutions

GPQA MATH GSM8K
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NLL is not a reliable predictor of ICL performance
e NLL consistently decreases, even though ICL worsens beyond 125 shots
e NLL for human-written rationales is lower than for model-written rationales, even though

actual performance is often worse



Inference costs

Summarization Sequential Parity
(500-shot = 205K tokens) (8192-shot = 540K tokens)
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Summary

1. Many-shots can improve performance up to 1000s of shots
Long-context models enable this (to varying degrees)

2. Model-generated or unsupervised prompts can often outperform
human-written prompts

3. Analyses:
o Many-shot ICL can overcome pretraining biases
o Many-shot ICL can have similar performance to SFT
o NLL is not a reliable predictor of ICL performance

Q: What are the mechanisms underlying many-shot learning? Why do
particular tasks benefit more?

Q: Why does performance sometimes degrade after many shots?

Q: Why does example ordering matter?



