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Statistical Learning Theory
Overview and Notation

Statistical Learning Theory (SLT) is the foundation of Machine
Learning

Provides theoretical bounds for the risk of models learnt from a
(single) training set

Assumed to issue from a single unknown probability distribution
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Statistical Learning Theory
Overview and Notation

Problem: predicting an output y ∈ Y given an input x ∈ X , using
mapping h : X → Y, h ∈ H

Loss Function: l : (X × Y)×H → R
It measures the error committed by a model h ∈ H
Zero-one loss is defined as l((x , y), h)

.
= I[y ̸= h(x)]

Input-output pairs are usually assumed to be generated i.i.d. by a
probability distribution P⋆, which is unknown
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Statistical Learning Theory
Overview and Notation

Expected risk – or expected loss – of the model h,

L(h) ≡ LP⋆(h)
.
= EP⋆ [l((x , y), h)]

=

∫
X×Y

l((x , y), h)P⋆(d(x , y)),

measures the expected value w.r.t. P⋆ of loss l

Expected risk minimizer

h⋆ ∈ argmin
h∈H

L(h),

is any hypothesis in H that minimizes the expected risk
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Statistical Learning Theory
Overview and Notation

Consider a training dataset D = {(x1, y1), . . . , (xn, yn)}
(x1, y1), . . . , (xn, yn) ∼ P⋆ i.i.d.

Empirical risk of hypothesis h

L̂(h) =
1

n

n∑
i=1

l((xi , yi ), h)

Empirical risk minimizer (ERM)

ĥ ∈ argmin
h∈H

L̂(h)
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Statistical Learning Theory
Overview and Notation

SLT seeks upper bounds on the excess risk

Difference between the expected risk of the ERM L(ĥ), and the lowest
expected risk L(h⋆)

Under increasingly more relaxed assumptions about the nature of the
hypotheses space H

H is finite
There exists a model h⋆ with zero expected risk (realizability)

But what should we do when distribution shifts are allowed?

May cause issues of domain adaptation or domain generalization
Existing attempts: lack of generalizability, use of strong assumptions
(Caprio et al., 2024, Section 2)
We use Credal Sets to address this issue
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Credal Sets

Credal Set Levi (1980): A set of probabilities P that is closed and
convex

Finitely Generated Credal Set: A credal set P with finitely many
extreme elements exP

P1

P3

P4 P2

P5

p(ω1) p(ω2)

p(ω3)

P({ω1}) P({ω2})

P({ω3})

P({y1}) P({y2})

P({y3})

p1(ω)

p2(ω)

q(ω)
ω

p1(y)

p2(y)

q(y)
y
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A Summary of our Learning Framework
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Deriving a Credal Sets
Available Evidence

Suppose that our evidence is a finite sample of training sets,
D1, . . . ,DN

Di = {(xi ,1, yi ,1), . . . , (xi ,ni , yi ,ni )}, for all i ∈ {1, . . . ,N}
(xi ,1, yi ,1), . . . , (xi ,ni , yi ,ni ) ∼ P⋆

i i.i.d., for all i ∈ {1, . . . ,N}
P⋆
i need not be equal to P⋆

j , for all i , j ∈ {1, . . . ,N}, i ̸= j
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Obtaining the Generalization Bounds
Realizability + Finite H

(C. et al, 2024, Theorem 4.1)

Let (xN+1,1, yN+1,1), . . . , (xN+1,nN+1
, yN+1,nN+1

) ≡ (x1, y1), . . . , (xn, yn) be
sampled i.i.d. from P⋆

N+1 ≡ P ∈ P. Recall that the empirical risk

minimizer is ĥ ∈ argminh∈H
1
n

∑n
i=1 l((xi , yi ), h). Assume

there exists a realizable hypothesis, i.e. h⋆ ∈ H such that LP(h
⋆) = 0

H is finite

zero-one loss l((x , y), h) = I[y ̸= h(x)]

Fix any δ ∈ (0, 1). Then,

P
[
LP(ĥ) ≤ ϵ⋆(δ)

]
≥ 1− δ,

where ϵ⋆(δ) is a well-defined quantity that depends only on δ and on the
elements of exP.
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Obtaining the Generalization Bounds
Realizability + Finite H

(C. et al, 2024, Corollary 4.3)

Retain the assumptions of Theorem 4.1. We have that

ϵ⋆(δ) ≤ ϵUB(δ)
.
=

log |H|+ log
(
1
δ

)
n

.

In turn, the following holds for all P ∈ ∆X×Y ,

P
[
LP(ĥ) ≤ ϵUB(δ)

]
≥ 1− δ. (1)

ϵUB(δ) is a uniform bound

When only few samples are available, ϵ⋆(δ) much smaller than ϵUB(δ)

O
(
log |∪Pex∈exPBPex |

n

)
≤ O

(
log |H|

n

)
Equation (1) corresponds to (Liang, 2016, Theorem 4)
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Obtaining the Generalization Bounds
Realizability + Finite H

Allowing for distribution drift

(C. et al, 2024, Corollary 4.4)

Consider a natural number k < n. Let (x1, y1), . . . , (xk , yk) ∼ P1 i.i.d., and
(xk+1, yk+1), . . . , (xn, yn) ∼ P2 i.i.d., where P1,P2 are two generic
elements of credal set P. Retain the other assumptions of Theorem 4.1.
Then,

P
[
LP1(ĥ1) + LP2(ĥ2) ≤ ϵ⋆(δ)

n2

k(n − k)

]
≥ 1− δ,

where ϵ⋆(δ) is the same quantity as in Theorem 4.1, and

ĥ1 ∈ argmin
h∈H

1

k

k∑
i=1

l((xi , yi ), h), ĥ2 ∈ argmin
h∈H

1

n − k

n∑
i=k+1

l((xi , yi ), h).
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n2

k(n − k)

]
≥ 1− δ,

where ϵ⋆(δ) is the same quantity as in Theorem 4.1, and
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Obtaining the Generalization Bounds
Further Results

In (Caprio et al., 2024, Section 4.2): similar results when the
realizability assumption is relaxed, but H is kept finite

In (Caprio et al., 2024, Section 4.3): similar results when the
realizability assumption is relaxed, and H is (potentially uncountably)
infinite
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Future Work

In the future, we plan to

Extend our results to different losses
Derive PAC-like guarantees on the correct distribution P being an
element of the credal set P
Validate our findings on real datasets
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Carthago Delenda Est

THANK YOU FOR YOUR ATTENTION!
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Obtaining the Generalization Bounds
No Realizability + Finite H

(C. et al, 2024, Theorem 4.5)

Let (x1, y1), . . . , (xn, yn) ∼ P i.i.d., where P is any element of credal set P.
Assume

H is finite

zero-one loss l((x , y), h) = I[y ̸= h(x)]

Let ĥ be the empirical risk minimizer, and h⋆ be the best theoretical
model. Fix any δ ∈ (0, 1). Then,

P
[
LP(ĥ)− LP(h

⋆) ≤ ϵ⋆⋆(δ)
]
≥ 1− δ,

where ϵ⋆⋆(δ) is a well-defined quantity that depends only on δ and on the
elements of exP.

Go to Corollary 4.7
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Obtaining the Generalization Bounds
No Realizability + Finite H

(C. et al, 2024, Corollary 4.6)

Retain the assumptions of Theorem 4.5. Denote by Q ∈ P, Q ̸= P, a
generic distribution in P different from P. Pick any η ∈ R>0; if the
TV-diameter diamTV (P) = η, we have that

P
[
LQ(ĥ)− LP(h

⋆) ≤ ϵ⋆⋆(δ) + η
]
≥ 1− δ,

where ϵ⋆⋆(δ) is the same quantity as in Theorem 4.5.

Probabilistic bound for the expected risk LQ(ĥ) of the ERM ĥ,
calculated w.r.t. the wrong distribution Q

Any distribution in P different from the one generating the training set
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Obtaining the Generalization Bounds
No Realizability + Finite H

(C. et al, 2024, Corollary 4.7)

Retain the assumptions of Theorem 4.5. Then,

ϵ⋆⋆(δ) ≤ ϵ′UB(δ)
.
=

√
2
(
log |H|+ log

(
2
δ

))
n

.

In turn, for all P ∈ ∆X×Y ,

P
[
LP(ĥ)− LP(h

⋆) ≤ ϵ′UB(δ)
]
≥ 1− δ, (2)

Main difference with Theorem 4.1: in Theorem 4.5, LP(ĥ)− LP(h
⋆)

behaves as O
(√

log |∪Pex∈exPB′
Pex |

n

)

Slower than what we had in Theorem 4.1: relaxation of the realizability

Equation (2) corresponds to (Liang, 2016, Theorem 7)
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⋆)

behaves as O
(√

log |∪Pex∈exPB′
Pex |

n

)
Slower than what we had in Theorem 4.1: relaxation of the realizability

Equation (2) corresponds to (Liang, 2016, Theorem 7)

Michele Caprio (U of Manchester) Credal Learning Theory December 10-15, 2024 2 / 3



Obtaining the Generalization Bounds
No Realizability + Finite H

Allowing for distribution drift

(C. et al, 2024, Corollary 4.8)

Consider a natural number k < n. Let (x1, y1), . . . , (xk , yk) ∼ P1 i.i.d., and
(xk+1, yk+1), . . . , (xn, yn) ∼ P2 i.i.d., where P1,P2 are two generic
elements of credal set P. Retain the other assumptions of Theorem 4.5.
Then,

P
[(

LP1(ĥ1)− LP1

(
h⋆P1

))
+

(
LP2(ĥ2)− LP2

(
h⋆P2

))
≤ ϵ⋆⋆(δ)

√
n

k(n − k)
(
√
k +

√
n − k)

]
≥ 1− δ,

where ϵ⋆⋆(δ) is the same quantity as in Theorem 4.5, and ĥ1 and ĥ2 are
defined as in Corollary 4.4.
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Obtaining the Generalization Bounds
No Realizability + (Possibly) Infinite H

Foregoing also finiteness of H
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Obtaining the Generalization Bounds
No Realizability + (Possibly) Infinite H

Assume zero-one loss, l((x , y), h) = I[y ̸= h(x)]

A .
= {(x , y) 7→ l((x , y), h) : h ∈ H}

σ1, . . . , σn ∼ Unif({−1, 1})
Rn,Pex(A)

.
= EPex [suph∈H

1
n

∑n
i=1 σi l((xi , yi ), h)]

(C. et al, 2024, Theorem 4.9)

Let (x1, y1), . . . , (xn, yn) ∼ P i.i.d., where P is any element of credal set P.
Let ĥ be the ERM, and h⋆ be the best theoretical model. Fix any
δ ∈ (0, 1). Then, for all P ∈ P,

P
[
LP(ĥ)− LP(h

⋆) ≤ ϵ⋆⋆⋆(δ)
]
≥ 1− δ,

where

ϵ⋆⋆⋆(δ)
.
= 4 max

Pex∈exP
Rn,Pex(A) +

√
2 log(2/δ)

n
.
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Obtaining the Generalization Bounds
No Realizability + (Possibly) Infinite H

Theorem 4.9 generalizes (Liang, 2016, Theorem 9), which focuses
only on the “true” probability P⋆ on X × Y

Our result holds for all the plausible distributions in credal set P
Hedge against distribution misspecification

In real applications, we effectively cannot compute Rn,P⋆(A)

Rn,P⋆(A) can be approximated via the empirical Rademacher

complexity R̂n(A) (Liang, 2016, Equation (219)), but
1 Especially in the case of low cardinality training set, i.e., if n is not

“large enough”: possible poor approximation of the classical bound
2 The collected dataset {(xi , yi )}ni=1 may well be a realization of a

stochastic process governed by a distribution different than P⋆

Empirical Rademacher complexity R̂n(A) is not able to distinguish
between these two cases
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Obtaining the Generalization Bounds
No Realizability + (Possibly) Infinite H

Rn,Pex(A)
.
= maxPex∈exP Rn,Pex(A) is more conservative (looser

bound), but

It can be computed explicitly – since we know credal set P and its
extreme elements exP
It holds for all P ∈ P

Go to Corollary 4.12
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Obtaining the Generalization Bounds
No Realizability + (Possibly) Infinite H

(C. et al, 2024, Corollary 4.10)

Retain the assumptions of Theorem 4.9. If P is the singleton {P⋆}, we
retrieve (Liang, 2016, Theorem 9).

(C. et al, 2024, Corollary 4.11)

Retain the assumptions of Theorem 4.9. Denote by Q ∈ P, Q ̸= P, a
generic distribution in P different from P. Pick any η ∈ R>0; if
diamTV (P) = η, we have that

P
[
LQ(ĥ)− LP(h

⋆) ≤ ϵ⋆⋆⋆(δ) + η
]
≥ 1− δ,

where ϵ⋆⋆⋆(δ) is the same quantity as in Theorem 4.9.
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Obtaining the Generalization Bounds
No Realizability + (Possibly) Infinite H

Allowing for distribution drift

(C. et al, 2024, Corollary 4.12)

Consider a natural number k < n. Let (x1, y1), . . . , (xk , yk) ∼ P1 i.i.d., and
(xk+1, yk+1), . . . , (xn, yn) ∼ P2 i.i.d., where P1,P2 are two generic
elements of credal set P. Retain the other assumptions of Theorem 4.9,
and let

ϵ⋆⋆⋆shift
.
= 4

[
Rk,Pex(A) + Rn−k,Pex(A)

]
+

√
2 log(2/δ)

n(n − k)

(√
n − k +

√
n
)
.

Then,

P
[(

LP1(ĥ1)− LP1

(
h⋆P1

))
+

(
LP2(ĥ2)− LP2

(
h⋆P2

))
≤ ϵ⋆⋆⋆shift

]
≥ 1− δ.
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