NOAI JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

XLSTM: Extended
Long Short-Term Memory

NeurlPS2024 Spotlight

Maximilian Beck*, beck@ml.jku.at, Xmaxmbeck, @ maxbeck.ai

Korbinian Poppel*, poeppelaml.jku.at, X KorbiPoeppel, @ korbi.ai

Joint work with Markus Spanring, Andreas Auer, Oleksandra Prudnikova,
Michael Kopp, Gunter Klambauer, Johannes Brandstetter and Sepp Hochreiter

Vancouver, December 2024 *equal contribution

How far do we get in scaling LSTMs to billions of
parameters?

Answer: Not so far with the original LSTM!

Why?

The original LSTM has three main limitations:
* L1: Inability to revise storage decisions

* | 2: Limited storage capacity

* |3: Lack of parallelizability

JX U |NXAI

L1: Inability to revise storage decisions

Problem:

* Consider a sequence in which you search for an element that is closest
to your query element

* As soon as there is a closer element we need to “overwrite” the memory
* The original LSTM struggles with those tasks

Intuition:

* LSTM input gate is bounded due to sigmoid activation and can only
change the memory through forget gates over time

JX U |NXAI

L1: Inability to revise storage decisions

Solution: : ; h
_ 4 ol ¢ N
* We replace the sigmoid gating of “ olle) (e o(iz) tanh(Z)
the original LSTM by l
Exponential Gating ¢ = of) e1 + exp(iy) tanh(3)

JX U |NXAI

L2: Limited Storage Capacity

Problem:

* The storage capacity of the original LSTM is limited, due to the vector
memory cell state

* E.g. compare to “infinite” sized KV-cache of Transformers

JX U |NXAI

L2: Limited Storage Capacity

Solution:

* We enhance the vector cell state
to a matrix memory cell state
with outer product update rule

JX U |NXAI

~

o) Cioi + exp(iy) vk

L3: Lack of Parallelizability

Problem:

* The original LSTM has recurrent weights that connects the hidden state
with gate pre-activations

* We need to compute a matrix multiply in every timestep which
prohibits parallelizability

JX U |NXAI

L3: Lack of Parallelizability

Solution:
* We drop the recurrent weights and introduce a fully parallelizable variant

JX U |NXAI

XLSTM has two new Memory Cells with Exponential Gating

Exponential Gating

/7 N\

sLSTM MmMLSTM
“scalar” cell state “matrix” cell state
 LT: Exponential Gating L1. Exponential Gating

 L2: Matrix Memory
« L3: Parallel Training

JX U |NXAI

XLSTM Architecture

* We use Transformer pre-norm blocks

* We stack mLSTM and sLSTM blocks
at a certain ratio

JX U |NXAI

sLSTM

MLSTM

10

Scaling Behaviour

17 1

—@— RWKV-4

167 —®— | lama

15 7 —®— Mamba
214 - —o— xLSTM[7:1]
o —e— xLSTM[L:0]
2 13 -
(O]
o
.5 12 1
-
(@]
T 11 A
(qv)
>

10 ~

300B Tokens
9 -
T T T T ' T ! ! 1 I
0.2 0.4 1.0 1.4
Number of Parameters x10°

JXU |NXA 8

Let us revisit our initial question:

How far do we get in scaling LSTMs to billions of parameters?

At least as far as current technologies
like Transformer or State Space Models.

JX U |NXAI

12

More Experiments in the Paper...

* A comparison to other recent language modeling architectures

* Experiments on generation times and maximal throughput

* Experiments on length extrapolation

* Evaluations of the XxLSTM on language downstream tasks

* Evaluations on synthetic tasks that measure the expressivity of the xLSTM

* Evaluations on synthetic tasks that measure the memory capacity of the xLSTM

* Many more details and formulas...

JX U |NXAI

13

Thanks
for watching!

[arxiv.org/abs/2405.04517

O github.com/NX-Al/xIstm

Maximilian Beck Korbinian Poppel
beck@ml.jku.at poeppel@ml.jku.at
X maxmbeck X KorbiPoeppel

@) maxbeck.ai @) korbi.ai

