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. Introduction

Neural ODE
It models the continuous dynamics of hidden states with a learnable ODE system:
T
dh(t
U0 fo(h(e). ), B(T) =h(0) + [ falh(e) . 0
0
Problem in Neural ODE

Without special treatment, merely stacking additional layers in the temporal derivatives
does not necessarily enhance Neural ODE performance.
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. Introduction

Batch Normalization
BN performs a re-centering and a re-scaling operation on the given input by subtracting

the mean and dividing by the standard deviation:
x- —
BN(x;) = BN, o (x;) = 7\/%7 +a. @)

Problem in Neural ODE + Batch Normalization

BN uses a single pair of 1 and o for normalization, while the output statistics from Neural
ODE are time-dependent. Thus, BN can not correctly normalize Neural ODE’s output.

0.2

S
=
T

Statistics

e Mean
Variance
T T

0 02 04 06 08 1
Time 3/8




. Methodology

What if we use y; and o7 for each time #?

Due to the adoption of adaptive ODE solver, the population statistics associated with the
time point £; € 77, required by the temporal discretization during inference, might not be

available if the time value #; is never encountered during training.

Temporal Adaptive Batch Normalization

We associate the time grid ¢, with population mean 1, and population variance o’ as
well as learnable parameters v;;, and o, for every m = 0,1,2,--- ;M. Given any time ¢, get

(1, 02,71, o) by interpolating (1%, o2, 77, ) over time.
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. Methodology

Temporal Adaptive Batch Normalization

X — L
TABN+ o (X)) = l’]—ujyj + aj, where x;; = w - hi(t;) + b, 3)
U]-Z +e€
i = G(tj, u*, T%), o7 = G(tj, 6%, T*), 7 = G(t;, 7", T*), o5 = G(tj, ", T*), (4
b, —t t—1t
G(t,a,T) = t* a 1. (5)
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. Experiments

Scalable Neural ODE

When the layer count exceeds 10, vanilla Neural ODEs fails due to numerical instability.
In contrast, the incorporation of TA-BN enables deeper layers within Neural ODE as the
learnable derivatives, scaling up the model size and enhancing accuracy.
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Figure: CIFAR-10 accuracies with increasing sizes of the backbones for learnable derivatives. These
figures illustrate the scaling up of Neural ODEs without BN (left) and Neural ODEs with TA-BN
(middle). We also compare the accuracies of these two settings in one figure (right).
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Experiments

Efficient Neural ODE

Neural ODEs with TA-BN achieves better accuracies and parameter efficiency than
existing Neural ODEs.

Model MNIST CIFAR10 SVHN CIFAR100 Tiny-Imagenet
Accuracy #Params Accuracy #Params Accuracy #Params Accuracy #Params Accuracy #Params

IL-NODE 0.991 21k 0.734 36k - - - - - -

2nd-Ord? 0.992 20k 0.728 35k - - - - - -

HBNODE 0.983 86k 0.622 173k - - - - - -

GHBNODE? 0.987 85k 0.605 173k - - - - - -
Aug-NODE* 0.982 84k 0.606 172k 0.835 172k N/A N/A N/A 366k
STEER® 0.986 84k 0.621 172k 0.841 172k N/A N/A N/A N/A
w/o BN 0.989+0.001 37k 0.517+0.049 22M 0.096+0.025 22M 0.246+0.084 2.2M - 22M

w/ Pop-TIBN 0.973+0.011 37k 0.548+0.087 22M 0.241+0.123 22M 0.251+£0.112 22M 0.044+0.007 2.2M
w/ Mini-batch BN 0.962+0.013 37k  0.822+0.095 22M 0.906+0.031 22M 0.492+0.176 22M 0.200+0.006 2.2M

w/ TA-BN 0.988+0.001 37k 0.748+0.059 70k 0.953+£0.002 220k 0.576+0.016 220k 0.436+0.013 220k
(ours) 0.988+0.001 220k 0.910+£0.010 2.2M 0.9584+0.004 2.2M 0.664+0.025 2.2M 0.512+0.008 2.2M

2Stefano Massaroli et al. (2020). “Dissecting neural odes”. In: Advances in Neural Information Processing Systems 33, pp. 3952-3963.

3Hedi Xia et al. (2021). “Heavy ball neural ordinary differential equations”. In: Advarnces in Neural Information Processing Systems 34,
pp. 18646-18659.

*Emilien Dupont, Arnaud Doucet, and Yee Whye Teh (2019). “Augmented neural odes”. In: Advances in neural information processing systens 32.

5 Arnab Ghosh et al. (2020). “STEER: Simple temporal regularization for neural ode”. In: Advances in Newral Information Processing Systems 33,
pp. 14831-14843.
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