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Text spotting
Image Video

detection + recognition detection + recognition + tracking
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Figure. ‘Gap between Spot. & Det.’: the gap between spotting and detection F1-score. The larger the gap, the poorer the recognition ability. Compared to the 
Image Text Spotting (ITS) model, the Video Text Spotting (VTS) model presents unsatisfactory text spotting F1-scores, which lag far behind its detection performance, 
especially on ArTVideo with curved text.

p Current state-of-the-art video text spotter has a main bottleneck: the limited recognition capability.

p Directly adopting a frozen image text spotter leads to low confidence and consequently a relatively low Recall on 
video data. Moreover, the image text spotter lacks the capability to track the text instances across frames.

p Since the scarcity of curved text instances within existing video text spotting datasets, evaluating the performance of 
recognizing curved text is still infeasible.

How to effor t lessly 
turn  an image tex t 
spotter into an expert 
on video ? 
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Ø We identify the limitations in current VTS methods and propose a novel and simple 
baseline, which leverages an off-the-shelf image text spotter with a strong customized 
tracker.

Ø We introduce the rescoring mechanism and long-short term matching module to 
adapt image text spotter to video datasets.

Ø We establish the ArTVideo test set for addressing the absence of curved texts in current 
video datasets and evaluating the text spotters on videos with arbitrary-shape text.
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Rescoring Mechanism
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confidences output by frozen ITS model:

confidences output by Rescoring head:

final confidences decided by score fusion operation:
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t means the t-th frame, 

p means the num of queries
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LST-Matcher

① ST-Matcher first associates the 
detected instances with trajectories 
in previous frames as denoted by 
blue lines. 

② LT-Matcher then associates the 
remaining unmatched instances by 
utilizing other trajectories in history 
frames as denoted by red lines.
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Training Loss
ReScoring Loss:

Long-Short Association Loss:

Overall Loss:



   
 

Slide 9



   
 

Slide 10



   
 

Slide 11



   
 

Slide 12



   
 

Slide 13

Thank you !
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