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Differentiable Structure Learning for Causal Discovery

" Structure learning aims to recover the structure of the causal
grahical model, a directed acyclic graph (DAG), that represents
causal mechanisms underlying the observational data.
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Differentiable Structure Learning for Causal Discovery

" Traditional structure learning is a combinatorial optimization problem,
searching for the DAG with the optimal data approximation score.

" Zheng et al. [20187] reformulates structure learning as a continuous
optimization problem by proposing a smooth function to characterize the
ayclicity property of a graph.

min  F(W) min  F(W)
WeRdXxd — W eRdXxd
subject to G(W') € DAGs subject to (W) = 0,

Zheng, X., Aragam, B., Ravikumar, P, & Xing, E. P. (2018, December). DAGs with NO TEARS: continuous optimization
for structure learning. In Proceedings of the 32nd International Contference on Neural Information Processing
Systems (pp. 9492-9503).




Ditferentiable Structure Learning with Partial Orders

" The order relationship of variables, characterized by partial orders, 1s a
common and 1mportant prior type in real-world, and can be easily
incorporated in order-based search in combinatorial structure learning.

" However, partial order constraints can not be easily integrated in
differentiable structure learning as it 1s modeled 1n the graph space
instead of order space.

. . FX .. 1 F W
min F(Triu(IWII"); X) . i (W)
subject to IT = O subject to h(W) =0,II(W) = O

HOW TO CHARACTERIZE II(W) =O DIFFERENTIALBLY?

Zheng, X., Aragam, B., Ravikumar, P, & Xing, E. P. (2018, December). DAGs with NO TEARS: continuous optimization
for structure learning. In Proceedings of the 32nd International Contference on Neural Information Processing
Systems (pp. 9492-9503).
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Structural Equation Model

Structural equation model Let GG denote a directed acyclic graph (DAG) with d nodes, where
the vertex set V' corresponds to a set of random variables X = { X, X»,..., X4}, and the edge set

E(G) C V x V defines the causal relationships among the variables. The structural equation model
(SEM) specifies that the value of each variable is determined by a function of its parent variables in
G and an independent noise component:

X; = [;(Paf %) (1)

where Pa_? ={X; | X; € X, (X;,X;) € E} denotes the set of parent variables of X in G, and
z; represents noise that 1s independent across different j. Denoting the structure of G as a weighted

adjacent matrix W € R**?, where W; ; # 0 equals that (X;, X;) € E(G), we have:
Xj :fj(wf:,jsxr*zj) (2)




Task Definition of Differentiable Structure Learning

min F (W) subject to h(W) =0

W e R4x4

d

h(W) Trace(Zc (W O W)Z), c;, >0

7=1 7

Proposition 1. (Theorem 1 in [Wei et al., 2020]). The directed graph of an adjacency matrix W is
a DAG if and only if h(W') = 0.

Some designs of the Acyclicity Constraint:

h(W) =Trace(e”°") —d

d
h(W) =-logdet(sI —W oW) +dlogs

B (W) :Trace<<1+ Lwo W)d —1)
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Partial Orders to Equivalent Path Absences

Definition 1 (Partial Order). For a set S of variables, a partial order is a binary relation < on S
which is a subset of S x S. For all elements x,y, and z in S, the following properties are satisfied:

Reflexivity: x < x for every x in S; Antisymmetry: If v < y and y < x, then x = y; Transitivity: If
r<yandy < z, then r < z.

For the structure, if < v, then y cannot be the ancestor of x; that is, no directed path exists from y
to « 1n the graph. Note that while the partial order relation 1s transitive, the absence of paths is not.
This requires further consideration of the transitive property of orders.

Definition 2 (Transitive closure). Fora set S and a binary relation R C S xS, the transitive closure
of R, denoted by R, is defined as R* = |J,_, R™. R™ is defined recursively by: R' = R,
R =RoR™" RoT = {(z,2) € S x S| 3y € S such that (x,y) € S and (y,z) € T}.
Remark 1. The transitive closure O™ of a set of partial orders O encompasses all orders either
directly contained in or inferable through transitivity from O.




Partial Orders to Equivalent Path Absences

Now, we consider the following result from graph theory, which is essential for transforming order
constraints into structural constraints.

Proposition 3. There exists at least one topological sort of DAG G that satisfies the partial order
set O if and only if, for any order (i, j) in O, X; is not an ancestor of X; in G.

With this statement, the structure learning problem with partial orders O can be implemented by its
equivalent constraint set of path prohibitions, formalized as:

min F(W) subjectto h(W) =0, X; ~ X; ¢ G(W)forall (i,5) € OF (6)

er_RﬂTX d

where X; ~ X; ¢ G(W) indicates that no directed path exists from X; to X; in G(W). Subse-
quently, we introduce this constraint’s continuous characterization and discuss its limitations.




Continuous Characterization of Path Absences

" Given that the (, )th element of (W oW)* represents the
existence of k-length paths from node to , we have the
following formula to characterize path absence constriants:

Proposition 5. No directed path X; ~ X; exists in G(W) if and only if (Zle (W o W) ) . =8

i,

With this statement, we can formalize the optimization problem in Equation (6) as follows:

ni}tivn F(W) subjectto h(W) =0, p(W,0) =0 (8a)
d
p(W,0)= ) (Z(W 0 W)f) (8b)
(2,7)eO+ \l=1 j.i




Continuous Characterization of Path Absences

Remark 2. A significant difficulty of the optimization problem formulated in Equation (8a) is its
steep decline in training efficiency as the complexity of partial orders increases. The penalty term
p(W,O), as defined by Equation (8b), includes a term for each order in O, directly impacting
the computational cost for gradient calculations. When dealing with a sequential ordering with m

variables, it introduces ("S) new terms. Each of these terms demands comparable time for gradient

calculation to the acyclicity term h(W') typically used in current studies. This makes the computa-
tional load impractical for long sequential orderings. Note that the total ordering constraint results
in the most constraint terms in this case, while it can be efficiently addressed by Equation (7).

This observation underpins the need to develop a more efficient method to ensure that the structure
learning process remains computationally feasible for long sequential orderings.




Augmented Acyclicity for Partial Orders

Definition 4 (Transitive Reduction). The transitive reduction O~ of a relation O is the smallest

relation such that the transitive closure of O~ is equal to the transitive closure of O. Formally,
(O=)* = O" and O~ is minimal.

The transitive reduction is used to eliminate redundant orders to facilitate calculation efficiency.
Below, we provide an example to illustrate transitive reduction alongside transitive closure.

Example 2. For a set of transitive binary relation O = {(1,2),(2,3),(1,3),(3.4)}, its transitive
closure is O = O U {(1,4).(2,4)}, and its transitive reduction is O~ = O\ {(1,3)}.

Definition 5. Ler G = (V. E) be a graph. A source is a vertex in V' with no incoming edges, i.e.,
{v €V :deg (v) = 0}. A sink is a vertex with no outgoing edges, i.e., {v € V : deg™ (v) = 0}.
Definition 6 (Maximal Path). Let G = (V, ) be a graph with a node set V' and edge set E. A path
o= {5 0 vg ) with (vi,vi 1) € E is considered a maximal path if vy is a source, vy is a sink,
and the path is not a proper subsequence of any other path from v to vy.

Definition 7. The transitive closure of a path p = (vy,...,vy), denoted as p™, is the set of all
ordered pairs (v;,v;) for1 <i < j <k.




Augmented Acyclicity for Partial Orders

11&5;1 F(W) subjectto h'(W,0) =0 (9a)

K(W,0)= Y h(AW,o0)) (9b)
oeP(O~)

AW,0) =W +7W,—-—W oW, (9¢)

I"Lr”ﬂ:?j = [(!,}) = f}] (gd)

Here, O~ is the transitive reduction of Q. P(O~) represents the set of all maximal paths of O7).
[P] is the indicator function valuing 1 if condition P holds and 0 otherwise. 7 > 0 is a hyper-
parameter used for adjusting the weight in gradient calculation.




Augmented Acyclicity for Partial Orders

11&5;1 F(W) subjectto h'(W,0) =0 (9a)

K(W,0)= Y h(AW,o0)) (9b)
oeP(O~)

AW,0) =W +7W,—-—W oW, (9¢)

I"Lr”ﬂ:?j = [(!,}) = f}] (gd)

Equation (9) can be interpreted as augmenting the original acyclicity constraint A(WW) = 0 to a
stronger one h'(W, ©O) = 0. Specifically, we use a series of partial order-augmented acyclicity con-
straints h(A(W.0)) = 0 for o in the maximal path set of O~ as described in Equation (9b). For
each augmented acyclicity, we add the path o to the adjacency matrix W by A(W, o) as detailed in
Equation (9¢). Thus, the acyclicity function h with A(W, o) as input represents a stronger acyclic-
ity constraint. The additional part of this stronger acyclicity accurately captures adherence to the
sequential ordering indicated by o, which can be derived from the following statement.




Augmented Acyclicity for Partial Orders

11&5;1 F(W) subjectto h'(W,0) =0 (9a)

K(W,0)= Y h(AW,o0)) (9b)
oeP(O~)

AW,0) =W +7W,—-—W oW, (9¢)

I"Lr”ﬂ:?j = [(!,}) = f}] (gd)

Remark 5. Recall that h(W) > 0 by Equation (4). Then we have that h'(W, Q) = 0 is equivalent
to h(A(W,0)) = 0 for o € P(O~) by Equation (9b),

W (W, 0) =0<= Yoc P(O), h(A(W,0)) =0

For each maximal path in O~ , we constraint that adding the edges from the path to the graph
preserves it as a DAG.




Augmented Acyclicity for Partial Orders

Lemma 1. A graph G is a DAG and satisfies a sequential ordering o = {(p1.p2,- -+ .pm)} if and
only if graph G is a DAG where E(G") = E(G) U o.

This lemma states the equivalence of h(A(W,0)) = 0 to adherence to the sequential ordering o.
Now consider the following statement.

Lemma 2. For the set P(O™) of all maximal paths of O~, the union of the transitive closures of
“ . 2o . . 2 A
these paths is the transitive closure of O: | J,, cp(o-) 0" = O

This lemma states that adherence to all the sequential orderings o indicated by maximal paths in
O~ is equivalent to adherence to the complete set O of partial orders. Recall that A'(W,O) = 0 is
equivalent to h(A(W,0)) = 0 for oin P(O~), and h(A(W, 0)) = 0 is equivalent to adherence to o.
Hence, we derive that A/ (W, Q) = 0 is equivalent to adherence to @ by Lemma 2, as described in
the following statement (the proof of these statements is provided in Appendix C.1).

Theorem 1. A graph G is a DAG and satisfies a set of partial orders O if and only if h'(W,O) = 0
for the function h defined by Equation (4) and h' defined by Equations (9b), (9¢), and (9d).




Augmented Acyclicity for Partial Orders

natifn F(W) subjectto h'(W,0) =0 (9a)

K(W,0)= Y h(AW,o0)) (9b)
oeP(O—)

AW,0) =W +7W,—W o W, (9¢)

I"{/r”“i?j = [(E‘,}) - U] {gd)

Remark 6. Now we aiscuss the complexity of gradient calculation for h'(W,C). Equation (9D)
indicates that this complexity is determined by the number |P(O™)| of maximal paths in O~ rather
than the size |O| of its transitive closure. For a sequential ordering with m variables, h' contains
only one factor of h regardless of the value of m. This addresses the impractical computational load
of path prohibition constraints with (’;) factors as discussed in Remark 2. Note that the computa-
tional complexity of h'(W, Q) can increase with multiple sequential orderings, which is evaluated
in the following section.
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Conclusion

" This paper enhances the field of differentiable structure learning
by enabling this framework to apply priors of partial order
constraints.

" We systematically analyze the related challenges of applying
flexible order constraints and propose a novel and eftective
strategy to address them by augmenting the acyclicity constraint,
with a theoretical proof confirming the correctness and
completeness of our strategy.







