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Goal: Out-of-distribution (OOD) detection and generalization.
Previous: OOD detection and generalization are conflict to each other.

Problem: Notable lack of theorical justification:

What is the relationship between these two tasks?
Our work: A joint framework for dual optimal OOD detection and generalization.

» Theoretical analysis to understand the dilemma between OOD detection and generalization

» A novel Bayesian optimization framework for dual optimal performance
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(a) Three types of data arise in the open world (b) Dilemma of current SOTA methods

Why do we care: one might want the model to be aware of outliers for safety,
but certainly does not want to sacrifice the classification accuracy.



Theorical Analysis

Theorem 1 (Sensitive-robust dilemma)

[...] it holds that
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Under mild conditions, the error lower bound of MPS-based

detectors are negatively correlated with OOD detection loss.
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Decoupled Uncertainty Learning L) Eiiodd

Different types of uncertainty in Bayesian framework:

data uncertainty

~ ~
p(9|z,0) = / p(glp) plulz,0) du.
overall uncertainty distributional uncertainty

T

Related to OOD generalization (theorem 1). Related to OOD detection by the definition.

One essential property is that high distributional uncertainty does not ensure high overall uncertainty.

The proposed decouple uncertainty learning:
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Decoupled Uncertainty Learning

Different types of uncertainty in Bayesian framework:

data uncertainty

~ ~
p(9|z,0) = / p(glp) plulz,0) du.
overall uncertainty distributional uncertainty

T

Related to OOD generalization (theorem 1). Related to OOD detection by the definition.

One essential property is that high distributional uncertainty does not ensure high overall uncertainty.

Now the dilemma does not hold anymore. The logic chain has been broken down from here
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Experimental Results () ’(’“%‘7

Distributional uncertainty

ID />SEM Model generalization OOD detection 0.6
P>/ Prrain Nethod ID-Acc T 0OD-Acc t FPR | AUROC 1 AUPR 1
Entropy 80.21 15.48 22.29 95.33 82.34
EBM (finetune) 80.53 18.14 13.47 96.78 87.84 20.41
CIFAR-100/ POEM 78.15 12.18 9.89 97.79 98.40 E
ImageNet-RC DPN 78.90 50.14 18.36 95.42 74.45 8
WOODS 80.69 54.38 38.15 92.01 71.79 0.2 1
SCONE 80.80 56.73 47.60 89.61 65.29
DUL (ours) 81.30+0:04 56.27+83-29 12/49+0:05 95.24+0.01 86.72+0-58
DULT (ours) Mi0.0S 55_4110.54 wiom 95.46+0-36 Mto.m 0.0 . .
Entropy 80.15 16.25 26.88 93.50 79.81 =2 8
EBM (finetune) 79.94 50.00 26.87 91.68 80.08
CIFAR-100 / POEM 78.68 52.53 32.71 91.30 94.65
TIN-597 DPN 78.44 17.67 24.99 93.55 81.63
WOODS 79.26 53.13 36.71 92.15 73.42
SCONE 79.53 52.70 35.60 92.47 73.58 1.5+
DUL (ours) 80.85+0-06 56.19+2-33 23.39+1-22 94.48+0-12 80.8212-63
DUL (ours) 80.50%0-06 56.22%1-66 2095078 90.88+0-08 96.33 210
ImageNet-200 / MSP 85.15 74.84 58.23 86.98 82.27 z
—— EBM (pretrain) 85.15 74.84 51.94 88.18 84.75 &
Maxlogits 85.15 74.84 51.62 88.30 84.71 0.5 -
Entropy 84.92 74.75 53.62 89.05 85.02
EBM (finetune) 84.14 73.31 59.73 87.54 82.81
ImageNet-200/ DPN 84.87 74.40 63.84 87.18 80.69 0.0
ImageNet-800 WOODS 84.99 74.98 51.71 88.30 84.80
SCONE 84.93 74.91 52.52 88.19 84.50
DUL (ours) 85.65+0:07 75.59+0-12 4914218 §027-29%8 85.62+0-03
1 Pretrain Finetune w/o DUL 1 Finetune w. DUL

Dual optimal performance Decoupled uncertainty



The Best of Both Worlds:

On the Dilemma of Out-of-Distribution Detection e
Qingyang Zhang, Qiuxuan Feng, Tianyi . Yatag O ;leriggnt

Qinghua Hu and Changqing Zhang*

Takeaway conclusion:
Dual optimal OOD detection and generalization can be achieved without trade-off.

Paper: https://arxiv.org/abs/2410.11576 Code: https://github.com/QingyangZhang/DUL
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