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Statistical Independence Testing

whether Pyy = PxPy 7



whether Pyy = PxPy 7

CRITICAL REGION

Hypothesis testing .

e Null hypothesis Hg: Pxy = PxPy.
e Alternative hypothesis Hi: Pxy # PxPy.

! threshold

Given n i.i.d samples Z := {(x;, yi)}"_;



Kernel-based Statistical Independence Testing

Definition (Hilbert-Schmidt Independence Criterion)

Let F be an RKHS with kernel kK : X x X — R and let § be a second RKHS on Y with kernel
[:Y x )Y — R, the HSIC between X and Y, denoted as HSIC(X, Y') is defined as

E[k(X, X)I(Y, Y)]+E[k(X, X)E[I(Y, Y')]—2Ex:y [Exk(X, X)EyI(Y, Y")],

where (X, Y’) is a independent copy of (X, Y). )




Kernel-based Statistical Independence Testing

Definition (Hilbert-Schmidt Independence Criterion)

Let & be an RKHS with kernel kK : X x X — R and let G be a second RKHS on Y with kernel
[:Y xY— R, the HSIC between X and Y, denoted as HSIC(X, Y) is defined as

E[k(X,X’)I(Y, Y’)]—|—E[k(X,X’)] E[I(Y, Y,)]—QEXIYI [Exk(X,X’)Eyl(Y, Y’)],

where (X', Y’) is a independent copy of (X, Y).

e HSIC(X, Y) =0« Pxy = PxPy with suitable kernels (e.g. Gaussian kernel).

Examples (Gaussian kernel with width o)

The Gaussian kernel is defined as k(x, x") := exp(—%), where o is the width.




Kernel-based Statistical Independence Testing

Definition (Estimation of HSIC)

An estimator of HSIC(X, Y') with sample Z is given by

1 1 1 1
HSICK(Z) = — Z kil + — Z Kijlar = 2— Z Kijlig = — Tr(KHLH),
I?J I7J7q7r ’DJDq
where kjj := k(x;, xj), lij :== (i, y;) are the entries of the n x n kernel matrix K, L,

respectively and H = | — %IIT is the center matrix and 1 is a vector of ones.

ko1 koo - ko Calc;llat.e HSIC,(Z) (2:ost
Kixn = : : . . O(n7) time and O(n~) space.
: R n: sample size.




1 1
HSIC,(Z) : = Z Kijlij + 2 n4 Z Kijlqr — zﬁ Z Kijlig = ﬁTr(KHLH),
i+J,q5r iJ,q

. The time/space computational complexity of current
statistic are both quadratic computing time.

* More flexible: The kernel can not be adaptive.
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A Frequency Domain Perspective

HSIC(X, Y) = / ey (@) — dorpy (@)X (F 1) (w)duw,

Rdx x Ry

Example: (X, Y) ~ pyy(x,y) < 1+ sin(wox)sin(woy).

n=2000,w=5
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We aim to obtain a more flexible (F ¢)(w)



A Frequency Domain Perspective

Enable more efficient calculation of statistic
e [ he statistic

HSICOGY) = [ [6m (@) — drary () F(F0) @)

Rx x RY
e Frequency samplings for integral approximation Sampling
1 Dx Dy 5
HSICw(Xa Y) — D D ZZ\quxy(wX;hwy;j) T quxPy(wX;hwy;j)\ )
X7V =1 j=1

where {wy.i} 2, {wy;j}f:yl are sampled independently with the measure F~ 14, F~ 1y,
respectively. And F~14 is a product measure, i.e., F~ 1) = (F~1p) @ (F~1)).

This type of approximation also called random Fourier features (RFF).



Design

F 14 (take F 1o (w) for example)

e Designing by kernels with adjustable parameters.

Kernel Ui(A) F~ 4 (w) To.(x)  pr(w)
N 2
Gaussian e 22 (27)~ dx/2 5 @—0°||wll3/2 x/o (27T)—dx/2e—||w||2/2

_ il
Laplace e o [Hd 2+w

Mahalanobis | e™2

LA T =LA

(27)~ dx/z‘):| 172, " gD

2 1
x/o \/;Hdm

$1/2x  (27)~%/2¢llwl2/2

Table: Some popular kernels (parametered o, ¥) with corresponding density functions.



Design F 14 (take F 14 (w) for example)

e Designing by kernels with adjustable parameters.

Kernel Vi(A) F~ hx(w) To,(x)  pr(w)

Gaussian e_% (27)~%/2ge o?llwll3/2 x/o (2) /2 e~ w22
_ Al

Laplace e [Hd 0'2+w x/o [Hd L

Mahalanobis | e~3ATE7'A  (or)=d/2|T|~L/2g=w Ew/2 | §U2,  (o7)=dh/2g=lf/2

Table: Some popular kernels (parametered o, ¥ ) with corresponding density functions.

e Disentangling the sampled objects and the learnable parameters

Relocate the learnable component onto X using 7y, (x).

» Convert the probability measure F 14, into a standard distribution py(w).



Obtain Independence Criterion
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We obtain the approximation of kernel
e Kernel with learnable mappings

Uk (Tox — Tox') = FIF (W) = /e_"wT(%kX_%kX/)pk(w)dw.

e Use the frequency sampling technique
D/2 D/2
w —NUT X—
2 (To.x = To.X') - == Z o~k (Tox=Tox') _ ZCOS (wa(Tekx — T )) ,

J=1 j].

where {wk;j}?:/lz are sampled independently with distribution py(w).
e The learnable RFF of k

2 :
Aglse) = \/g [cos(wlTTgk ), Sln(wl To,X), - -;COS(WE/QTE?,(X),S'“(Wg/zﬁ?kx)} )

e Hence \) (Tg,x — To,x") = A (x)A(x') T



The statistic can be obtained as follows.
e The learnable RFF of samples in matrix form Ax := [Ax(x1); .--; Ak(Xn)]nxD-
e Obtain Ay by analogy. The same number of samplings are used for simplify.

e The statistic with sample Z

1 1
HSIC,,(Z) := ?Tr(/\xl\;H/\y/\,T,H) = ﬁTr(I\;HAyI\,T,HI\X) —

1

T 2
— IALAYel 2

where I\XC L= Hﬂx,/\yc .= H/\y.
e The time complexity is O(nD(dX +dy + D)) I.e. the running time is linear with n.



Asymptotic Behavior

Let h) .= L Z ar) ) (@) (@) lw) o le) (@) Then  Under the null hypothesis Ho,

ijqr t,u,v,w)
HSIC,(Z) coverages in distribution to

nHSIC,( —> Z )\;X”, )\;g;(zj) / ,E,L;,),g( )sz,-,zq,zr:
=7 7, 7g 7y

where X3, X%,, ... are independent \7 variates and )\ is the solution to eigenvalue problem.
Also, under Hy, HSIC,(Z) converges in distribution as

n> (HSICw(Z) —E ZHSICw(Z))i N(0,02), 02 = 16[E (EjqrhN)? — (E Zh(f”)ﬂ

with the simplified notation E; o , := E; 2.z andBz :=E; ; ;2.




Construct Optimization Objective

e According to the asymptotics, the power of the test

nEzHSIC(Z) — £
Vnoy, ’

Py, (nHSICL(Z) > 1) — (

where ® is the standard normal CDF.

e The optimization objective
("HSIC.(2) — &)

W)
where HSIC,,(Z) is the criterion, ¢, is a estimate of threshold and the estimate of
variance 52 := 16[1 3" .(& 3. W2 — HSIC3(Z)].

n3 1+G¥ yqr

J =




Obtain ¢, with Gamma approximation.

e Determined completely by the first two moments of distribution under Hy.

XV~ Le=x/h (E[HSIC,(2)])? nVar[HSIC,(Z)]

nHSIC,(Z) ~ , B =

Bir(y) 0 e = LA RSIC,(Z)]

e The (1 — a)-quantile of Gamma distribution

€ v 1a—x/B
/ x_€ dx =1 — a.
o BT(v)

E[HSIC,(Z)]




Obtain ¢, with Gamma approximation.

e Determined completely by the first two moments of distribution under Hy.

xV—1a—x/B e _ (E[HSIC,(2)])?
BIT(y) 7T Var[HSIC,(2)]

e The (1 — a)-quantile of Gamma distribution

€ v 1a—x/B
/ X € dx =1 — a.
o BT(v)

nVar[HSIC,,(Z)]

mHSIC,(Z) ~ E[HSIC.,(2)]

B =

The linear-time estimations of two moments of distribution under Hj.

Theorem (Linear-Time Estimations)

Under Hy, the estimation of mean and variance with bias of O(n~ ') to Ez[nHSIC,(Z)] and
Varz[nHSIC,,(Z)], denote as & and Vy, respectively, are given by

_TARAATAGA] o 2n(n—4)(n—5) [1T(AxAx) 11" (AyAve)*1]

o (n—12 T (h—1D(n—2)n-3) n

where ()2 is the entrywise matrix power. Both £ and Vg can be calculated in O(nD?) time.
4




The estimate of variance 32 also can be calculated in linear-time
e By the definition 52 := 16[2 Z,(% D iar h(w)) HSICi(Z)].

ijqr

o Calculate ) ; ., h,(Jq,), in linear time

Y ) = 1 {anAl + n?(A1); + (17C)B; + (17B)C; — nE; — nF; — nD; — 1TD] ]

yqr 2
J,q,r
[[AXAY DXDH[ AxAv)Ay]Dxn A [Ax© (AZAAT)T luxp | > D= [B® Clua ' Time Complexity: [ O@D% ]
777777777777777777777777777 \ ‘ i O(nD)
[Ax1]px1, [Ay1]px1 —> B := [AX(Ail)]nxly [AY(AYI)]nxl E:— [AX(Aﬁc)]nxl, F .o [Ay(AgB)]nxl i

As a result, the optimization objective can be computed in linear time.



Experiments
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The method achieves flexible independence
testing in linear time (w.r.t sample size).

1. Flexible: The kernel can be adaptive.
2. Fast: linear-time time/space complexity.



