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Fast adaptation to new users

Multiple metrics arise in machine learning today
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Image from Internet

Subject to privacy regulation

Data and model bias Resource constraints
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Tasks, data, metrics

all can be modeled as an objective…

min
𝜃

loss (model 𝜃, training data, metric, tasks)

Unified as multi-objective learning



Formulation for multi-objective learning

A vector optimization problem
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min 
𝜃

 𝐹 𝜃 = [𝑓1 𝜃 , … , 𝑓𝑚 𝜃 , … , 𝑓𝑀 𝜃 ]

How to optimize a vector?
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Commonly used dominance notions are not enough
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How to optimize a vector?
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Pareto dominance is not 

enough: simply minimizing one 

objective achieves weak Pareto 

optimality.

Linear scalarization is not 

enough: objectives can be 

dominated by the one 

with the largest scale.



Relative preference with cone-induced partial order 
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Definition 1 (𝑪𝑨-dominance). Given 𝑣, 𝑤 ∈ 𝑅𝑀, 𝐴 ∈  𝑅𝑀×𝑀, and 𝐶𝐴 ∶=
 {𝑦 ∈  𝑅𝑀 |𝐴𝑦 ≥  0}  ≠  ∅, we say 𝑣 strictly dominates 𝑤 based on 𝐶𝐴 if 

and only if 𝐴(𝑣 −  𝑤)  <  0.
𝐴 = 𝐼𝑀, 𝐶𝐴 = 𝑅+

𝑀

 reduces to Pareto optimality



Relative preference with cone-induced partial order 
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Definition 1 (𝑪𝑨-dominance). Given 𝑣, 𝑤 ∈ 𝑅𝑀, 𝐴 ∈  𝑅𝑀×𝑀, and 𝐶𝐴 ∶=
 {𝑦 ∈  𝑅𝑀 |𝐴𝑦 ≥  0}  ≠  ∅, we say 𝑣 strictly dominates 𝑤 based on 𝐶𝐴 if 

and only if 𝐴(𝑣 −  𝑤)  <  0.

Benefits with a general partial order:

1. allows controlled ascent, thus can reach 

every point on the Pareto front

2. avoid merely minimizing a single objectiveSolid red curves: Pareto fronts

Green dots: reference points

Gray shaded regions: objectives dominating 

the reference points, under different 𝐶𝐴 in 

both figures.



Relative preference with cone-induced partial order 
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Definition 1 (𝑪𝑨-dominance). Given 𝑣, 𝑤 ∈ 𝑅𝑀, 𝐴 ∈  𝑅𝑀×𝑀, and 𝐶𝐴 ∶=
 {𝑦 ∈  𝑅𝑀 |𝐴𝑦 ≥  0}  ≠  ∅, we say 𝑣 strictly dominates 𝑤 based on 𝐶𝐴 if 

and only if 𝐴(𝑣 −  𝑤)  <  0.

Benefits with a general partial order:

1. allows controlled ascent, thus can reach 

every point on the Pareto front

2. avoid merely minimizing a single objective

e.g., a user gives at least 𝛼 relative 

importance to each objective with 

𝛼 ∈  (0, 0.5), then this can be 

achieved by defining a partial order 

induced by the cone (example in [2]): 

𝐶 = 𝐹 ∈  𝑅2 𝛼𝑓1  + 1 −  𝛼 𝑓2

≥  0, 1 −  𝛼 𝑓1  +  𝛼𝑓2  ≥  0}



Address the imbalance issue through constraints
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ℓ1

ℓ2

Hypothesis ℋ

Pareto 

front

In multi-lingual ASR, we want the training 

losses of all languages to be similar.

Can we use linear scalarization (LS, a.k.a. 

static weighting) with carefully tuned weight?

NO! LS cannot achieve certain constraints, even when fine-tuned!



Address the imbalance issue through constraints
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𝑓1

𝑓2

Hypothesis ℋ

Pareto 

front

Idea: enforce the objectives 

to achieve similar values

e.g. use a constraint function

𝐻 𝜃 =  𝑓1 𝜃 − 𝑓2 𝜃

𝐻 𝜃 = 0

min 
𝐶𝐴

 𝐹 𝜃   s.t. 𝐻 𝜃 = 0



FERERO: a flexible framework to capture preferences
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min 
𝐶𝐴

 𝐹 𝜃

s.t. 𝐻 𝜃 = 0, 𝐺 𝜃 ≤ 0

Relative preference:  captured by the partial order, 

   determines improving directions

Absolute preference: captured by the constraints



min
𝑐, 𝑑

𝑐 +
1

2
∥ 𝑑 ∥2, s. t.  𝐴∇𝐹 𝜃 ⊤𝑑 ≤ 𝑐 ⋅ 𝐴1

𝑐𝑔𝐺 𝜃 + ∇𝐺 𝜃 ⊤𝑑 ≤ 0

𝑐ℎ𝐻 𝜃 + ∇𝐻 𝜃 ⊤𝑑 = 0

improvement defined by 

general partial order

approximate the Hessian 

∇2𝐹(𝜃) by identity

A primal approach to the constrained problem

Define a subprogram that finds an update direction 𝑑 which --
both improves objectives & constraints:

min 
𝜃

 𝐹 𝜃   s.t. 𝐻 𝜃 = 0, 𝐺 𝜃 ≤ 0Main program:

12

Idea similar to SQP:

Use local quadratic 

approximation to the 

objectives



A primal approach to the constrained problem
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Subprogram:

Dual of the subprogram:

Find dynamic weight 𝜆 for the following problem



Algorithm update
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Just like MGDA, can be seen as a 

dynamic weighting method

The optimal direction:

𝜃𝑡+1 = 𝜃𝑡 + 𝛼𝑡𝑑∗(𝜃𝑡)

Update 𝜆∗(𝜃𝑡) : 𝜆∗ 𝜃𝑡 = argmin𝜆∈Ω𝜆
 𝜑(𝜆; 𝜃𝑡) 

Update 𝜃𝑡 along 𝑑∗(𝜃𝑡):

𝑑∗ 𝜃 = − ∇𝐹 𝜃 𝐴⊤, ∇𝐺 𝜃 , ∇𝐻(𝜃) 𝜆∗(𝜃)



KKT condition

15

KKT condition

∇𝐹 𝜃 𝐴⊤𝜆𝑓 + ∇𝐺 𝜃 𝜆𝑔 + ∇𝐻 𝜃 𝜆ℎ = 0 stationarity

primal feasibility𝐺 𝜃 ≤ 0, 𝐻 𝜃 = 0

𝜆𝑔
∗ 𝜃 ⊤ −𝐺 𝜃 + = 0 complementary slackness

𝜆𝑓 ∈ Δ𝑀 , 𝜆𝑔 ∈ 𝑅+

𝑀𝑔
, 𝜆ℎ ∈ 𝑅𝑀ℎ dual feasibility



Proper merit functions (KKT score)
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⋅ +: element-wise ReLU function

| ⋅ | : element-wise absolute function

it achieves 0 iff the model 𝜃 satisfies the 

first-order KKT optimality condition

𝐽1 𝜃 = ∥ 𝑑∗ 𝜃 ∥2  +𝜆𝑔
∗ 𝜃 ⊤ −𝐺 𝜃 + +∥ 𝐺 𝜃 + ∥1+∥ 𝐻 𝜃 ∥1

stationarity feasibilityslackness



Optimization analysis
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▪ The convergence rate matches that of gradient descent 

for general nonconvex objectives.

Under mild assumptions, with proper choice of step sizes,  

Theorem (Optimization error guarantee, informal)

for the FERERO meta algorithm, 
1

𝑇
σ𝑡=0

𝑇−1  𝐽1 𝜃𝑡 = 𝑂(𝑇−1)

▪ The efficient single-loop and stochastic algorithms 

developed under this framework also have convergence 

rate guarantees.



FERERO performance
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❑ Linear scalarization (LS) can’t converge to certain points 

on the Pareto front.

❑ Multi-gradient descent algorithm (MGDA) does not align 

perfectly with preference constraints.



FERERO performance
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❑ PMTL does not allow controlled ascent, thus not 

converging in some problems (d).

❑ EPO & FERERO allow controlled ascent and converge 

in those problems.



Application to multi-lingual ASR
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self-supervised loss

supervised loss

(MoDo)

EPO & PMTL do not capture flexible 

preferences to solve this problem.
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Thank you!

Take-home message

We propose a flexible framework capturing absolute & relative 

preferences for preference-guided MOL.

Algorithms and efficient variants are developed under this 

framework with convergence rate guarantees. 
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