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Motivation

® Goal: Estimate the causal effect of a treatment on an outcome.
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X (treatment): Smoking
Y (outcome): Lung cancer
W (proxy): Tax on cigarettes
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e Goal: Estimate the causal effect of a treatment on an outcome.
e Often impossible with observational data = need for interventions.
e Cannot intervene on all variables = need for proxy experiments.
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‘ W (proxy): Tax on cigarettes
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Min-cost intervention for causal effect
identification (MCID)

The goal is to find min-cost interventions such that given the interventions, the
causal effect of interest is identified.

T* € argminC(Z), s.t.
Te2?!
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Min-cost intervention for causal effect
identification (MCID)

The goal is to find min-cost interventions such that given the interventions, the
causal effect of interest is identified.

T* € argminC(Z), s.t.
Te2?!

3 functional f(-) : Px(Y) = f({Pz}zez)-

At least as hard as: The weighted minimum-hitting set problem.

So the min-cost ID problem is NP-hard! —> impossible to solve in polynomial time.
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Solving the MCID problem: old approach

® Previous s.o.t.a. [Akbari et al., 2022] required exponential many calls to an
exponential-time algorithm!
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Solving the MCID problem: old approach

® Previous s.o.t.a. [Akbari et al., 2022] required exponential many calls to an
exponential-time algorithm!

extremely slow in practice!
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Solving the MCID problem: our approach

e Reformulated MCID as SAT and ILP problems.
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Proxy experiments for adjustment criterion

Adjustment criterion: aset Zs.t.:
Px(Y) = Ep[P(Y | X, 2)],

i.e., the identification functional f is an expectation.
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Surrogate problem: 7* € argmins v C(Z) s.t. Px(Y) = Ep,[Pz(Y | X, Z)] for some Z.
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Px(Y) = Ep[P(Y | X, 2)],

i.e., the identification functional f is an expectation.

Generalized adjustment criterion: a pair (Z,2) s.t.:
]P)X(Y) = EPI[PI(Y | X7Z)]
Reminder - MCID problem:

I* € argmin C(Z), s.t. 3 functional f(-) : Px(Y) = f({Pz}zez).
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Surrogate problem: 7* € argmins v C(Z) s.t. Px(Y) = Ep,[Pz(Y | X, Z)] for some Z.

This special case is solvable in polynomial time!
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Proxy experiments for adjustment criterion

® Solution to surrogate problem is a feasible solution to the MCID problem.
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efficient heuristic.
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Proxy experiments for adjustment criterion

® Solution to surrogate problem is a feasible solution to the MCID problem.

® Surrogate problem is solvable in polynomial time = can be used as an
efficient heuristic.
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Future direction

® Design of efficient approximation algorithms with theoretical guarantees.
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Thank you for listening!
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