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A Fundamental Problem: Value Function? & A BERTA
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» Classical RL learns value function, the expectation of returns:

Q"(s,a) = E[Z7(s,a)]

oo
=E nytR(s,,a,)\so =s,a0=a
=0
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A Fundamental Problem: Value Function? & AT BERTA

EDMONTON-ALBERTA-CANADA

» Classical RL learns value function, the expectation of returns:
Q"(s,a) =E[Z7(s,a)]

oo
=E nytR(s,,a,)\so =s,a0=a
=0

» Distributional RL learns the whole distribution of returns:
D(Z"(s,a))

where D extracts the distribution of a random variable.
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Value Function Return Distribution
Probability A Probability
Classical RL Distributional RL
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Distributional RL: A Well-Defined RL Area S A BERTA
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» Classical RL: Classical Bellman operator 7™ is defined as

T70(s,a) = E[R(s,a)] + 1Eypr [Q (5, d)], (D

where 7™ is a y-contractive operator.
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» Classical RL: Classical Bellman operator 7™ is defined as

T70(s,a) = E[R(s,a)] + 1Eypr [Q (5, d)], (D

where 7™ is a y-contractive operator.

> Distributional RL: Distributional Bellman operator T" is de-
fined as

TZ(s,a) 2 R(s,a) +~Z (s'.d'), (2)

where 7 is a contractive operator under some proper distribution
divergence / statistical distances, e.g., Wasserstein distance.
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Distributional RL: A Well-Defined RL Area & Al BERTA

EDMONTON-ALBERTA-CANADA

» Classical RL: Classical Bellman operator 7™ is defined as

T70(s,a) = E[R(s,a)] + 1Eypr [Q (5, d)], (D

where 7™ is a y-contractive operator.
> Distributional RL: Distributional Bellman operator T" is de-
fined as
TZ(s,a) 2 R(s,a) +~Z (s'.d'), (2)
where 7 is a contractive operator under some proper distribution
divergence / statistical distances, e.g., Wasserstein distance.
> Two key factors in Distributional RL:

@® How to parameterize Z™?
@ How to choose the statistical distance?
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Two Limitations of Existing Algorithms & AT BERTA
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@ Inaccuracy in Capturing Return Distribution Characteristics
» Non-crossing issue of learned quantile curves
» Restricted expressiveness of pre-specified statistics
@ Difficulties in Extension to Multi-dimensional Rewards
» Many RL tasks learn a multi-dimensional return distribution
> multi-source rewards
> hybrid reward architecture
> sub-reward architecture
> Difficult to extend existing algorithms to multi-dimensional setting

» multi-dimensional categorical representation?
> multi-dimensional quantile regression?
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Our Contribution & s
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» Algorithm. We introduce a new distributional RL algorithm based
on Sinkhorn divergence, a regularized Wasserstein loss.

» Theory. We prove the contraction properties of Bellman opera-
tors under Sinkhorn divergence, revealing an interpolation rela-
tionship between Wasserstein distance and MMD.

» Experiments. We conduct extensive experiments over 55 Atari
games, investigating

» superiority in multi-dimensional reward setting

» Comprehensive comparison with existing algorithms
» Sensitivity analysis and computational cost
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Distributional RL with Sinkhorn Divergence
Sinkhorn Divergence
Contraction Properties under Sinkhorn Divergence
Extension to Multi-dimensional Return
Algorithm
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Popular Statistical Distances S AT BERTA

> Optimal Transport EDMONTON-ALBERTA-CANADA

W.— inf / (e, y)dTI(x, y), 3)

HeTI(p,v)

where the minimizer II* is called the optimal transport plan or
optimal coupling.

> p-Wasserstein Distance

1/p
W, = < inf /||x—y]pdﬂ(x y)> . “4)

IIeII(p,v)
» Maximum Mean Discrepancy (MMD)
MMD; =E [k (X,X)] +E [k (Y,Y)] —2E[k(X,Y)], (5

where k(-, -) is a continuous kernel and X’ (resp. Y’) is a random
variable independent of X (resp. Y).
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Sinkhorn Divergence B A UERREA
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» Sinkhorn divergence is an entropic regularized Wasserstein dis-
tance. We first define W, . (1, V) as

Weclpor) = min [ c(s,3)dl1(x,y) + KL & 0),
(6)

where the regularization KL(II|u®v) = [ log <%) dII(x,y),
is also known as mutual information.

» Sinkhorn divergence W, . is defined as

Wc,a(ﬂa V) = 2Wc,5(ﬂ7 V) - Wc,e(/% ,u) - Wc,a(V7 V)- (N
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Benefits and Regularization Effect S AT BERTA
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@® Addressing Limitation 1: Efficient approximation of a multi-
dimensional Wasserstein distance

@ Addressing Limitation 2: Leveraging samples, un-restricted statis-
tics, to represent return distributions

@ Regularization Effects

> “Smoother” transport plan
» Maximum entropy principle
> Stable optimization: strongly convexity and smoothness

Ke Sun (University of Alberta) 2024 16/39



Smoother Transport Plan e TR

P> Recap. Regularized Wasserstein distance: EDMONTON-ALBERTA-CANADA

Wee(p,v) = Herlrili(z V)/c(x, y)dII(x,y) + eKL(II|p @ v) (8)
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Basic Contraction Properties S AT BERTA
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The contraction analysis of T depends on two properties of the statis-
tical distance d,.

Contraction Properties of statistical distance d,,
@ Scale Sensitive (S):
dy(aX,aY) < |a|"dy(X,Y), 9)

where 7 > 0.

@ Sum Invariant (I):
d,(A+X,A+7Y)<d,(X,Y), (10)

where the random variable A is independent of X and Y.

Ke Sun (University of Alberta) 2024 19/39



Contraction Property of Regularization B MR
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» Recap. Regularized Wasserstein distance:

Weclpor) = amin [ s 3)dlGx,y) + KL )
(11)

» Given a joint distribution 1I, we define the supremal form of the
regularization term:

MIF (u,v) = sup  KL(II|u(s,a) @ v(s,a)) (12)
(s,a)eSxA

Proposition 1. Contraction under MIY (u, v/).

The distributional Bellman operator €7 is non-expansive under MIfY
for any non-trivial joint distribution II.

Ke Sun (University of Alberta) 2024 20/39



Contraction Property of W, . e TR
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Two Basic Contraction Properties of WV, .
Considering W, . with the unrectified kernel ko, := —||x — y||* as —¢
(o > 0) and a scaling factor a € (0, 1), we have:
» (I) W, is sum-invariant
> (S) WC,E(aM7 aV) S Aa(a7 a)WC,E(Ma V) ’
with a scaling constant A.(a, ) € (|a|*, 1) for any p and v in a
finite set of probability measures.

Remark. The scaling factor A.(a, &) has no explicit form, but it is

determined by the scale factor a, the order «, the hyperparameter ¢,
and the set of interested probability distributions.

Ke Sun (University of Alberta) 2024 21/39



1 N UNIVERSITY OF
Contraction Property of W, . & AT BERTA
> We consider the supremal form of statistical distance. EMNTON-ALsERTA-canAdA

Wl(,)z(ﬂ? v) = sup WQE(/‘L(S,LI),Z/(S,Q)). (13)
(s,a)eSx.A

Thm 1. Contraction under Ww and Interpolation Relationship.

Considering W (1, v) with an unrectified kernel ko := —|jx — y||*
as —c (a > 0), where p, v € the distribution set of {Z™ (s, a)} for
s €S, a € Ain a finite MDP. Then, we have:

D (¢ = 0) Wee(u, ) 2W (u,v). When e = 0, T™ is -
contractive under W

® (¢ = +00) W, (i, 1/) — MMDZ_(p,v). When & = +00, T7 is
~v“-contractive under W?‘;

® (¢ € (0,+00)) T is at least A, (v, )-contractive under WV, .
where A (v, ) € (y%, 1) is an MDP-dependent constant.

G E7
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A Brief Summary & Al BERTA
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> Interpolation Property. Sinkhorn divergence interpolates be-
tween Wasserstein distance and MMD by varying e.
= Contraction of T" in distributional RL !
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A Brief Summary & Al BERTA

EDMONTON-ALBERTA-CANADA

> Interpolation Property. Sinkhorn divergence interpolates be-
tween Wasserstein distance and MMD by varying e.
= Contraction of T" in distributional RL !

> Consistency with Existing Contraction Conclusions.

»> QR-DQN with contraction guarantee under Wasserstein distance
» MMD-DQN with contraction guarantee under MMD if

1. Unrectified kernel (energy distance or Cramer distance)
2. Gaussian kernel: no contraction guarantee...

Ke Sun (University of Alberta) 2024 23/39



A Brief Summary & AT BERTA
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Algorithm  d,, Distribution Divergence Repr ion Zy Convergence Rate of T Sample C ity of d,
C51 Cramér distance Categorical Distribution Nai
QR-DQN-1 Wasserstein distance Quantiles ¥
MMD-DQN MMD Samples ~2 (ko)
SinkhornDRL Sinkhorn divergence Samples vy (e —=0)
(ours) (c=~ka) ; ~/2 (e — 00)

the sample dimension and x = 23d + ||¢|| . Where the cost function ¢ is -Lipschitz
complexity is improved to O(1/n) using the kernel herding technique in MMD.
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Extension to Multi-dimensional Return & AT BERTA

EDMONTON-ALBERTA-CANADA
» We define a d-dimensional reward function R : S x A — P(RY).

> We have a d-dimensional return vector Z” (s, a) = Y~ v'R(s;, a;),
with ZF(S,(,Z) = (Z?(S, a)? o ,ZZ;(S,LI))T-
» The joint distributional Bellman operator T is defined as

TIL(s,a) 2 R(s,a) + vZ (s',d")

Corollary 1.

For two joint distributions Z; and Z,, T7 is A (7, «)-contractive
under W,

CE’

Weo(T"Zy,T7Ls) < Ac(y, ) We(Z1,Zs). (14)

Ke Sun (University of Alberta) 2024 26/39
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Generic Algorithm Update S AT BERTA
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Two key factors in distributional RL:
> Samples to represent the return distribution

» Sinkhorn divergence as the statistical distance

Algorithm 1 Generic Sinkhorn distributional RL Update

Require: Number of generated samples N, the cost function ¢, hyperparameter € and the target
network Zg-«.

Input: Sample transition (s, a, 7/, s")

1: Policy evaluation: a* ~ 7(-|s’) or Control: a* « argmax,e4 Efil Zg (8',a');
20 TZi 1 +Zp+ (s',0%), V1< i< N

Output: W, . ({Zo(s 0)}.Ly {52,

WQE(Zg (s,a),T"Zy(s,a))

Ke Sun (University of Alberta) 2024 28/39



Sinkhorn Iteration: Approximation & AT BERTA

Sinkhorn Iteration with L steps for approximation MO BT CAOR

» Differentiable and Efficient, e.g., matrix-vector multiplication
P> Approximation guarantee with a linear rate

> Easy to implement: adding extra differential layers in existing
network architecture

Algorithm 2 Sinkhorn Iterations to Approximate W, . ({Zi}fil , {TZ/}iV:l)

Input Two samples sequences {Z; }L 11325 } number of iterations L and hyperparameter

j=1

26 =0(Z;,%Z;) forVi=1,..,N,j=1,...,N
Ki; = exp(=&;/e)

b+ 1n

cforl=1,2,...,Ldo

1; 1
a4 g b 1o

end for

o

Wee (12015 AT2))L) = (Ko b a)
Return: ﬁ,.,g ({Z1}fi1 ) {TZJ};\;)

ﬁ@?’."p.‘{’!\.”—"
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Experiment Setting oy
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» Environments:
55 Atari Games
» Algorithms:
> DQN
» C51
» QR-DQN
» MMD-DQN
» SinkhornDRL (ours)
» The unrectified kernel
ko = —llx — y[* in
SinkhornDRL (consistent
with Theorem 1)

Atari Games

Ke Sun (University of Alberta) 2024 31/39



Comparison with Existing Algorithms S AT BERTA
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Figure 1: Mean (left), Median (middle), and IQM (5%) (right) of Human-Normalized Scores (HNS)
summarized over 55 Atari games. We run 3 seeds for each algorithm.

Evaluation Metric: Human Normalized Score (HNS)
> Mean
» Median
» Interquartile Mean (%)
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Ratio Improvement Analysis across All Games &1 8ERTA
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= Sinkhorn / QRDQN (%) o Sinkhorn / MMD (%)
Sl S H
g g
: "" » |
) Sow
i |II g, |I [T —
S ““llm. ...... s .
E " é @
g &
1
(a) SinkhornDRL vs QR-DQN (b) SinkhornDRL vs MMD-DQN

Figure 2: Ratio improvement of return for SinkhornDRL over QR-DQN (left) and MMD-DQN (right)
averaged over 3 seeds. The ratio improvement is calculated by (SinkhornDRL - QR-DQN) / QR-DQN
in (a) and (SinkhornDRL - MMD-DQN) / MMD-DQN in (b), respectively.
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Sensitivity Analysis and Computational Cost

> Sensitivity Analysis

X

ALBERTA
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Seaquest Seaquest Breakout
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? —— QRDQN g —— Samples=500
S so0 — MMD 9 s
< <

o o

0 25 30 35 40

0 35 40 o s o 2
Millions of Frames (M)

5 s 25 30 35 40
Millions of Frames (M)

s 15 2
Millions of Frames (M)

(a) Hyper-parameter & (b) Number of Samples (c) Sinkhorn Iterations L

Figure 3: Sensitivity analysis of SinkhornDRL on Breakout and Seaquest in terms of ¢, number of
samples, and number of iteration L. Learning curves are reported over three seeds.

» Computational Cost. SinkhornDRL improves performance over
baselines at the cost of slightly increasing computational burden.
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Multi-Dimensional Reward Functions S AT BERTA
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> Reward Decomposition. We decompose the scalar-based re-
wards to multi-dimensional vectors based on the respective re-
ward structures.

> Algorithms.

@ SinkhornDRL
@ MMD-DQN
® Multi-dimensional Quantile Regression DQN? (not clear)

c AirRaid Asteroids Gopher - MsPacman Pong - UpNDown
Exr=o ==t e T e 5 e 5
) —_ m —— Sinkhom —_ om |, inkhomn 10 —— Sinkhom —— Sinkhom
K] Sinkhor Sinki W sknww Sinki S&/mﬁ\/wl/w Sinki
-3 a: NIl
g - f w
“iions f Frame (M) Milions of Frames (M) ~ Millions of Frames (M)~ Millions of Frames (M) Milions of Frames (M) ~ Millions of Frames (M)

Figure 4: Performance of SinkhornDRL on six Atari games with multi-dimensional reward functions.
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Conclusion: Take-away Messages & ALBERTA
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@ Sinkhorn divergence can efficiently approximate a multi-dimensional
Wasserstein distance by introducing an entropic regularization,
interpolation between Wasserstein distance and MMD.

@ Distributional RL under Sinkhorn divergence can also guarantee
a contraction with an MDP-dependent contraction factor.
® Distributional RL with Sinkhorn divergence can

» Address two major limitations: unrestricted distribution represen-
tation and extension to multi-dimensional reward setting

» Regularization effect: “smoother” transport plan and stable opti-
mization

» Competitive performance in extensive experiments
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Open Problems and Future Work & Al BERTA
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@ The gap exists between theoretical properties of statistical dis-
tances and performance in RL environments.

@ It lacks a quantitative criterion to recommend in choosing an RL
algorithm, given an environment.

® Connection and discrepancy between generative models and dis-
tributional RL.
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Thank You!
Questions?
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