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From Instance Training to Instruction Learning:

Task Adapters Generation from Instructions
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@ Cross-task Generalization

® Develop models capable of effectively transferring knowledge across a diverse range of tasks. This

involves training on a set of tasks (meta-train phase) and evaluating the model's ability to perform on
unseen tasks (meta-test phase).

@ Challenges

® Traditional instance training methods require extensive task-specific data, limiting adaptability in real-
world scenarios.

® The need to process instructions repeatedly for the same task (all need to concatenate the task
description and demostrations) leads to high computational costs.

Can we mimic the way humans understand and follow instruction descriptions
when learning new skills and tasks to assist in solving new problems?



:@»jnstruction Learning: By learning from instructions, a class of tasks is treated as a whole, allowing for a
¥ higher-level understanding of instructions and the ability to address problems effectively.
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Instruction Fusion: TAGI incorporates instruction fusion, allowing dynamic interaction between inputs and

instructions, enriching the model's understanding and enhancing performance on unseen tasks.

Low Inference Cost: TAGI processes task instructions only once, significantly reducing computational overhead
during inference, especially beneficial as the number of samples or instruction length increases.

Update with Low Parameters: TAGI requires minimal parameter updates, leveraging a hypernetwork to generate
task-specific adapters.

PreTraining: TAGI benefits from pretraining, which enhances the model's ability to comprehend and execute task
instructions effectively.

Perform Unseen Tasks Well: TAGI is designed to learn and perform well on unseen tasks.

Meta-  Pre- Instr. Instr. Low Up. Low Infer. Instr. Unseen
Method Train Train Concat. Fus. Params Cost Learning Task
Simple FT X X v v X X X X
TO  /Tk-Instruct v X v v X X X vvv
Hypter v X X X v v X v’
HyperTuning v v’ X X v’ v X v’
HINT v v v X v v X Vv
TAGI (Ours) v’ v’ v’ v’ v’ v’ v’ VvV




TAGI Architecture

0 Hypernetwork Pretraining: Pretrains the hypernetwork on standard text data to enhance its ability to recognize and
respond to instructions.

€ Hypernetwork Finetuning (Distillation and Alignment): Finetunes the hypernetwork on meta-training tasks to learn the
generation of optimal parameters from task instructions. Utilizes knowledge distillation to align the task-specific model
(acting as the teacher) with the vanilla LLM combined with the generated task adapters (acting as the student).
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Instruction fusion:

F; = CrossAttentionLayer, (S;, )

LoRA Generation:
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Main Results: SNI

Rougel results on Super-Natural Instructions (SNI). The best results are in bold, while the second-best are
underlined. The Average Relative FLOPs cost is calculated relative to Tk-Instruct. We use the number of FLOPs
required by each model to process one task (containing 100 examples).

Def (Zero-shot) Def + 2 Pos. (Few-shot) Avg. Rel.

Method Base (250M) XL (3B) XXL (11B) Base (250M) XL (3B) XXL (11B)  FLOPs
No FT 8.8 14.3 26.2 94 13.6 30.5 x 1.0
Tk-Instruct’ 35.3 48.0 53.6 42.1 54.0 62.0 x 1.0

~ #Decoder-only model
GPT-2 XL (1.5B)* - 38.2 - - 45.3 - x0.33
OPT (13B)* - - 44.8 - - 51.5 x0.36

- # Hypernetwork-based model
Hypter* 12.1 16.8 15.5 10.6 14.2 13.4 x0.35
HyperTuning’ - 38.9 - - 48.6 - x0.34
HINT* 333 47.2 51.1 41.8 53.2 56.4 x0.37

TAGI (Ours) 353 48.4 5231 42.5 56.3 58.4 % x0.39




Main Results: P3

Average accuracy results over T0O evaluation tasks after training on the TO P3 train set. Our method uses only
template inputs without demonstrations yet achieves competitive performance with ICL-based methods using 16
shots, with much-reduced inference overhead. The Average Relative Inference Time is calculated relative to the
Metatrain. We use the inference time required by each model to process all 11 test tasks with batch\_size of 1.

T5-LM TO Avg. Rel.

Method Base (250M) Large (800M) XL (3B) Base (250M) Large (8300M) XL (3B) Infer. Time
# MTestl ] Avg.
Zero-shot 43.9 41.5 42.6 49.1 52.4 57.6 x 1.0
Full FT 44.6 45.5 47.2 51.9 56.6 61.4 x 1.0
Metatrain © 44.1 52.4 53.1 50.1 52.4 56.8 x 1.0

- #ICL-based method
Concat-ICL® 44.2 47.6 - 48.6 53.2 - x4.1
FiD-ICL“ 47.0 55.2 60.0 51.0 534 58.2 x1.9
Ensemble-ICL® 44.6 54.5 52.6 499 53.7 57.7 x13.2
# Hypernetwork-based model
Hypter* - - - - - 56.2 -
HINT* - - - - - 60.3 -
TAGI (Ours) 45.6 54.7 58.9 50.8 53.8 58.8 x (.88
# HyperT5 Avg. (Without SCloze dataset)
FiD-ICL“ 46.9 55.8 60.6 51.7 53.9 58.5 x1.9
HyperTuning' - 54.6 59.6

TAGI (Ours) 46.7 56.0 59.8 51.7 54.6 59.2 % 0.88




Ablation Results

The performance of different numbers of meta-training tasks.
(a) SNI Def + 2 Pos. Results (b) SNI Def Results
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Ablation Study: Demonstrate that the inclusion of
pretraining, instruction fusion, and alignment are
crucial for enhancing cross-task generalization, with
each component significantly contributing to the
model's overall efficacy, leading to a 5% improvement
over baselines in cross-task performance.

60 5 10 20 36
Number of Metatrain Tasks
Method Def Def + 2Pos. P3
TK-Instruct 48.0 54.0 -
TK-Instruct-LoRA  47.5 54.6 -
TK-Instruct-Prefix  42.6 54.2 -

" Hypertuning 330 486 596
HINT 47.2 53.2 60.3
TAGI 48.4 56.3 60.6
Ablation Study
w/0o pretraining 47.1 55.6 58.3
w/o Instr. Fus. 35.1 40.6 44.2
wlo L. 47.6 554 59.8
wlo Ly 45.7 53.9 57.3
w/0 Line 47.5 55.2 59.4
w/o Hypernetwork  43.8 50.7 -
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