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Introduction

PAC-Bayes theory provides high-probability generalization bounds for aggregated predictors.

Instead of learning a single predictor, we are interested on a probability measure ρ ∈ M1(Θ)
over the set of candidate predictors Θ.

Notation:
Data, D = {xi}ni=1, is i.i.d. generated from an unknown distribution, ν, with support on X
We have a loss function ℓ : Θ×X → R+

Population risk of θ ∈ Θ is defined as L(θ) := Eν [ℓ(θ,X)]

Empirical risk of θ ∈ Θ is defined as L̂(θ, D) := 1
n

∑n
i=1 ℓ(θ,xi)

Standard PAC-Bayes bounds for bounded losses (McAllester, 2003):

Let π ∈ M1(Θ) be any prior independent of D. Then,

E
ρ
[L(θ)] ≤ E

ρ
[L̂(D,θ)] +

√
KL(ρ|π) + log 2

√
n

δ

2n
,

The inequality holds simultaneously for every ρ ∈ M1(Θ) with probability no less than 1− δ
over the choice of D ∼ νn.

We can minimize the bound with respect to ρ to obtain novel learning algorithms.

2



Introduction

Unbounded losses are widely used in machine learning (e.g., cross-entropy, MSE).

PAC-Bayes bounds for unbounded losses involve extra difficulties.

Most existing PAC-Bayes bounds for unbounded losses are derived from next result:

PAC-Bayes (oracle) bound for unbounded losses

Let π ∈ M1(Θ) be any prior independent of D, Then, for any δ ∈ (0, 1) and any λ > 0, with
probability at least 1− δ over draws of D ∼ νn,

E
ρ
[L(θ)] ≤ E

ρ
[L̂(D,θ)] +

1

λ

KL(ρ|π) + log
fπ,ν(λ)

δ

n

 ,
where fπ,ν(λ) := Eπ Eνn

[
eλn (L(θ)−L̂(D,θ))

]
.

[Alquier, P., Ridgway, J., & Chopin, N. (2016). On the properties of variational approximations of Gibbs posteriors. Journal of

Machine Learning Research, 17(236), 1-41.]

Main difficulties:

The exponential moment term fπ,ν(λ) has to be bounded using extra assumptions on the
loss (e.g., sub-Gaussian assumption).

The free parameter λ > 0 cannot be exactly optimized (discrete grid + union bounds).
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Introduction

Contributions

A novel PAC-Bayes oracle bound for unbounded losses
Extends classic Cramér-Chernoff bounds to the PAC-Bayesian setup.

Provides a general framework to obtain empirical bounds where:
The free parameter λ is exactly optimized without resorting to union-bound
approaches.

The exponential moment term is averaged by the posterior, resulting in more
informative generalization bounds.

Can be minimized to obtain novel posteriors.

We illustrate the framework in several cases: generalized sub-Gaussian losses, L2
regularization, and input-gradient regularization.
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Main Theorem

PAC-Bayes-Chernoff (oracle) bound

Let π ∈ M1(Θ) be any prior independent of D. Then, for any δ ∈ (0, 1), with probability at least
1− δ over draws of D ∼ νn,

E
ρ
[L(θ)] ≤ E

ρ
[L̂(D,θ)] + inf

λ∈[0,b)

{
KL(ρ|π) + log n

δ

λ(n− 1)
+

Eρ[Λθ(λ)]

λ

}
simultaneously for every ρ ∈ M1(Θ), where Λθ(λ) := logEν

[
eλ (L(θ)−ℓ(X,θ))

]
is the Cumulant

Generating Function (CGF) of the loss.

Observations:
Parameter-free bound without union-bounds at a logn cost.

The risk of ρ ∈ M1(Θ) depends on a three-way trade-off:

The empirical risk Eρ[L̂(D,θ)]

The KL term KL(ρ|π)

[Novel term] The averaged CGF term Eρ[Λθ(λ)]

If the loss is the 0-1 loss, we recover Langford-Seeger’s bound.
[Seeger, Matthias. "PAC-Bayesian generalisation error bounds for Gaussian process classification." Journal of Machine

Learning Research 3.Oct (2002): 233-269.]
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Beyond bounded CGFs

In order to get rid of the exponential moment term, the standard practice is to make assumptions
on the tails of the loss function, such as the bounded CGF assumption (which generalizes the
sub-Gaussian, sub-gamma and sub-exponential cases).
[Rodríguez-Gálvez, Borja, Ragnar Thobaben, and Mikael Skoglund. "More PAC-Bayes bounds: From bounded losses, to losses

with general tail behaviors, to anytime validity." Journal of Machine Learning Research 25.110 (2024): 1-43.]

Definition (bounded CGF)

A loss function ℓ is of bounded CGF if there is a convex and continuously differentiable function
ψ(λ) such that ψ(0) = ψ′(0) = 0 and for for every θ ∈ Θ and all λ ≥ 0,

Λθ(λ) := logE
ν

[
eλ (L(θ)−ℓ(X,θ))

]
≤ ψ(λ) .

However, uniformly bounding the CGF of every
model discards information on how well each
loss concentrates, which varies a lot among
models, resulting in a worst-case bound.
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Beyond bounded CGFs

In order to better exploit the differences between models, we introduce a generalization of the
bounded CGF assumption:

Definition (Model-dependent bounded CGF)

A loss function ℓ has model-dependent bounded CGF if for each θ ∈ Θ, there is a convex and
continuously differentiable function ψ(θ, λ) such that ψ(θ, 0) = ψ′(θ, 0) = 0 and for all λ ≥ 0,

Λθ(λ) := logE
ν

[
eλ (L(θ)−ℓ(X,θ))

]
≤ ψ(θ, λ) . (1)

This results in more general bounds where the generalization of the posterior also relies on
focusing on models whose loss is more concentrated:

Theorem
Let ℓ be a loss function with model-dependent bounded CGF. Let π ∈ M1(Θ) be any prior
independent of D. Then, for any δ ∈ (0, 1), with probability at least 1− δ over draws of D ∼ νn,

E
ρ
[L(θ)] ≤ E

ρ
[L̂(D,θ)] + inf

λ∈[0,b)

{
KL(ρ|π) + log n

δ

λ(n− 1)
+

Eρ[ψ(θ, λ)]

λ

}
simultaneously for every ρ ∈ M1(Θ).
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Beyond Gibbs’ posterior

Remarkably, the bound above can be minimized with respect to ρ ∈ M1(Θ):

Theorem
Under the model-dependent bounded CGF assumption, the posterior distribution minimizing the
PAC-Bayes-Chernoff bound is of the form

ρ∗(θ) ∝ π(θ) exp
{
−(n− 1)λL̂(D,θ)− (n− 1)ψ(θ, λ)

}
, (2)

where λ > 0 has been fixed.

Observe that under this optimal posterior, the maximum a posteriori (MAP) estimate is

θMAP = argmin
θ∈Θ

{
L̂(D,θ) +

1

λ
ψ(θ, λ)−

1

λ(n− 1)
lnπ(θ)

}
,

where the extra term, ψ(θ, λ), can be understood as a regularizer.

If you want to know more about how we apply these techniques to obtain novel empirical
PAC-Bayes bounds for L2 and input-gradient regularization under Lipschitz and log-Sobolev
assumptions, we invite you to read the full paper:

https://arxiv.org/pdf/2401.01148
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