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LLMs Struggle at Implicit Reasoning w/ Parametric Memory

= Implicit Reasoning
o Reasoning without explicit verbalization of intermediate steps

= Parametric Memory
o Facts & rules stored in weights
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LLMs Struggle at Implicit Reasoning w/ Parametric Memory

= Composition
o LLMs only show substantial evidence in first

hop reasoning (Yang et al. 2024) /\
| ; | ]

Composition

o “"Compositionality gap” does not decrease ‘
with scale (Press et al. 2023) )t TN

= Comparison

Comparison
o GPT-4 struggles at implicitly comparing entity P \,
attributes despite knowing them perfectly \ : @ A -
(Zhu et al. 2023) ‘ -y ’

Press et al. Measuring and Narrowing the Compositionality Gap in Language Models. Findings of EMNLP-23.
Yang et al. Do Large Language Models Latently Perform Multi-Hop Reasoning? ACL-24.
Zhu et al. Physics of Language Models: Part 3.2, Knowledge Manipulation. arXiv-23.
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Why Does it Matter?

= Implicit Reasoning
o Reasoning without explicit verbalization of intermediate steps
o The default mode of large-scale (pre-)training

o Fundamentally determines how well LLMs acquire structured representations of
facts and rules from data

o Propagateble knowledge updates & systematic generalization (more later)

= Parametric Memory
o Facts & rules stored in weights
o Unique power in compressing and integrating information at scale
o Important for tasks with large intrinsic complexity (example later)
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Research Questions

= [s implicit reasoning doomed given that even the most capable models
struggle?

= Can it be resolved by further scaling data and compute, or are there
fundamental limitations of transformers that prohibit robust acquisition
of this skill?
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Approach: Synthetic Data & Training from Scratch

= Allows us to control the data and perform clean evaluations

= Important nowadays as pretraining/fine-tuning corpora keeps
penetrating downstream evaluations
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Approach: Synthetic Data & Training from Scratch

= Test whether the model can

o Induce latent rules from a mixture of
atomic facts and inferred facts (deduced
via latent rules)

o Deduce novel facts by applying the
acquired rules

a Test (ID): unseen inferred facts deduced from
the same set of atomic facts underlying the
observed inferred facts

o Test (OOD)/systematic generalization: unseen
inferred facts derived from a different set of
atomic facts (Lake et al., 2018)
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Model & Optimization

= Standard decoder-only transformer as in GPT-2
o 8 layers, 768 hidden dimensions and 12 attention heads
o Results robust to different model scales

= AdamW with learning rate 1e-4, batch size 512, weight decay 0.1 and
2000 warm-up steps

I THE OHIO STATE UNIVERSITY



= 1) Unique role of grokking 2) Difference in systematicity in generalization

Composition Comparison
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Critical Data Size?
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(a) Effect of the inferred/atomic ratio ¢.
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Critical Data Size
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(a) Effect of the inferred/atomic ratio ¢.
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(b) Effect of changing |&| (¢ = 9.0).
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Analyzing the (change) in Inner Workings during Grokking
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Generalizing Circuits

Composition Comparison
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Changes during Grokking

= Explanation via circuit
efficiency

o Amount of facts stored by
memorizing & generalizing
circuits

= Effects from regularization
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Generalizing Circuits & Systematic Generalization

Composition Comparison
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Generalizing Circuits & Systematic Generalization

Composition
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Model Scale & Tokenizations

Larger models converge in less optimization steps
(no qualitative differences observed)
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The Power of Parametric Memory for Complex Reasoning

= Reasoning task with large search space & no surface form clues
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Table 1: Results on the complex reasoning task. Direct/CoT: predict the answer directly/verbalize the
reasoning steps. “+R”: retrieval augmentation.

GPT-4-Turbo Gemini-Pro-1.5 -
Grokked Transformei
Direct+R  CoT+R Direct CoT Direct+R CoT+R
Accuracy (%) 33.3 31.3 28.7 11.3 37.3 12.0 99.3
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Thanks!
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