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Motivation
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• Vision transformers have demonstrating state-of-the-art performance in diverse 
tasks (e.g., image classification, object detection).

• However, their high computational requirements grow quadratically with the 
number of tokens used.

• Token sparsification techniques have been proposed to address this issue. These 
techniques employ an input-dependent strategy, in which uninformative tokens 
are discarded from the computation pipeline, improving the model’s efficiency.

• Despite their benefits, the robustness of these techniques against availability 
attacks remains underexplored.



DeSparsify
Attack Goal
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• In this work we present DeSparsify attack

• The attack increases the model's computational cost by adding a small 
perturbation to the input that is invisible to the human eye.

• Increase the number of chosen tokens within the model. It can be achieved by 
comprehending the selection mechanism of the attacked module, we can 
manipulate the model's decisions, compelling it to elevate the number of tokens 
utilized.

• thereby potentially compromising its performance due to the associated 
computational overhead. Additionally, is likely to increase energy, memory, 
throughput & GFLOPS



DeSparsify
Methodology

• We utilize the PGD attack and propose a novel loss function used to iteratively 
update the perturbation pixels.

• The loss function consists of two components:
• ℒatk - the attacking component aimed at maintaining as many tokens as possible.

• ℒcls - maintain the model’s original classification for a stealthier attack.
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DeSparsify
Methodology

• In this work, we target three primary TS mechanisms:
• ATS [15]- differentiable parameter-free module that adaptively down-samples input tokens by 

utilizing the significance scores from the attention matrix.

• AdaViT [16]- adaptively determines the use of tokens, self-attention heads, and transformer 
blocks using a lightweight decision network.

• A-ViT [17]- halts the computation of different tokens at different depths using a halting score-
based module that is incorporated into the model’s network.
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DeSparsify
Methodology

• To attack AdaViT’s TS mechanism we aim to push its decision network to never 
discard any tokens.
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Classification loss

• To increase the stealthiness of our attack by preserving the original classification 
of the input image, we use the output of the attacked image and bring it closer to 
the output of the clean image. 

• By keeping the adversarial output similar to the clean output, we minimize any 
discrepancies that could be flagged by anomaly detection systems. 
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DeSparsify
Main Results
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Baselines are incapable of compromising the sparsification mechanism

Single-Image perturbations increase GFLOPS 
by 74%, 44%, and 100% on the ATS, AdaViT, 
and A-ViT, respectively.

Note that the crafted perturbations have just a 
minor effect on the model’s classification accuracy.



DeSparsify
Transferability & Ensemble

• We examine the effect of perturbations trained 
on a model with one sparsification mechanism 
are tested on the same model with a different 
sparsification mechanism.
• Transferability works to some extent, however, not 

as much as white-box attacks. 

• Another strategy we evaluate is the ensemble 
training strategy, in which the adversarial 
example is trained concurrently on all of the 
sparsification techniques.
• Here, the perturbation can affect all TS mechanisms, 

achieving nearly the same performance as white-box 
attacks.
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DeSparsify
Effect on Hardware

• We also assess the effect of our attack on 
hardware, based on several GPU metrics.

• As opposed to the baselines that have no 
effect, the attack significantly affects the 
GPU metrics.
• For example, the single-image attack variant 

increases the memory usage by 37%, the 
energy consumption by 72%, and the 
throughput by 8% compared to the clean 
images.
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DeSparsify
Countermeasures

• To actively mitigate the presented threats, an upper bound can be set to the 
number of tokens used in each transformer block.
• Can be determined by computing the average number of active tokens in each block on a 

holdout set.
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The defense does not 
compromise model accuracy 
on clean (benign) images.

The defense successfully 
mitigates the attack’s 
effectiveness.



Summary & Discussion

• Vulnerabilities: Our research exposes key weaknesses in token sparsification 
mechanisms in vision transformers, enabling an attack that raises computational 
cost and energy use.

• DeSparsify Attack: Demonstrated effectiveness across various TS mechanisms, 
with thorough evaluation on transferability and hardware impact.

• Future Outlook: Emphasizes the need for secure deployment in resource-sensitive 
environments. Suggests future work on robust defenses and applications in other 
domains.
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Thank You
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