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3D Content Creation

Gaming Film Autonomous Driving Metaverse



3D Asset Manually designed by 3D artists

Traditional 3D Content Creation is Expensive



Amazing Generation Results from Other Modalities

SD for Image Generation Kling for Video Generation Suno for Music Generation

How to create high-quality 3D content with 

AI?



3D Generation Pipeline

3D Representation

Condition Signal

Tri-plane

Image

3D representation is crucial for high-quality 3D generative modeling!

Rendering

Fitting

For generative 3D modelling, which 3D 

representation is better?



Current 3D Representations

Tri-plane

Hybrid variants are suitable for deep 

learning

Represent complex object

Volumetric rendering is costly

Shared decoder in generation tasks 

limits capability

Neural Radiance Fields Point Cloud Mesh 3D Gaussian Splatting

Simple

Num. of points is not 

fixed

No topological 

information

Widely adopted in graphics 

pipeline

Fast to render

No regular structure

Num. of vertexes is not fixed

May be complex when 

representing detailed objects

Impressive recon. quality

Fast to render

Num. of gaussians is not 

fixed

Not spatially structured



Impressive reconstruction quality

Real-time rendering speed

Number of gaussians is not fixed

Not spatially structured

Why not consider using 3DGS for 

3D generative modeling?

If we address these issues, 

given 3DGS the spatial structure (e.g., voxel grid)?

Impressive reconstruction quality

Real-time rendering speed

Efficient feature extraction

Seamless integration with 

mainstream diffusion methods



Impressive reconstruction quality

Real-time rendering speed

Number of gaussians is not fixed

Not spatially structured

Why not consider using 3DGS for 

3D generative modeling?

How to address these two shortcomings?



Densification-constrained Gaussian Fitting



Naïve Approach of Fixing Length

Remove Densification and Pruning in Original GS



Naïve Approach of Fixing Length

Remove Densification and Pruning in Original GS

Ground-truth Ground-truthFitting Results Fitting Results



Densification-constrained Gaussian Fitting
N𝑚𝑎𝑥: Predefined Maximum Number of Gaussians Used During Fitting (32,768 in this work)

N𝑐: Number of Gaussians in Current Iteration

N𝑑: Number of candidates to Perform Densification

Densification 
Detection

Pruning

N𝑚𝑎𝑥

Candidate 
Sampling

Densification

N𝑐

N𝑑

Pruning
Detection

After fitting, we pad Gaussians with α = 0 to N𝑚𝑎𝑥 without affecting the rendering results.



Fitting Results Evaluation
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∗ denotes that the implicit feature decoder is shared across different objects.



Fitting Results Evaluation

Ground-truth Instant-NGP GS Voxel* Triplane* Ours

∗ denotes that the implicit feature decoder is shared across different objects.



What are the advantages of Densification-constrained 

Gaussian Fitting?

Strong capability: impressive reconstruction quality using only 32,768 

Gaussians

Fast: fitting converge faster than other methods

Compact: orders of magnitude fewer parameters compared to existing 

works of similar quality, also reduces the modeling difficulty for the 

diffusion models

Next, structure the 3D Gaussians into voxel grids!



Gaussian Structuralization via Optimal Transport

Optimal Transport

“Move” each Gaussian into a voxel

Each voxel encapsulates the feature 

vector of the corresponding Gaussian



Gaussian Structuralization via Optimal Transport



What are the advantages of OT-based structuralization?

Allow the use of standard 3D U-Net as backbone for diffusion without 

elaborate designs

Achieve maximal spatial correspondence, characterized by minimal 

total transport distances

Standard 3D convolution can capture the correlations among 

neighboring Gaussians, facilitating efficient feature extraction

Post-processing does not affect fitting quality



Noise Generated GaussianCube

Timesteps

⨁∽

∽

Class/Image/Text

3D U-Net

3D Diffusion on GaussianCube



Generation Results Evaluation
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Generation Results Evaluation
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FID↓
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Digital Avatar Creation

Ours Rodin Rodin w/o 2D SR



Generation Results Evaluation

Input Portrait Rodin Ours



Input PortraitsGenerated Avatars

Generation Results Evaluation

3D avatar creation from in-the-wild portrait



Generation Results Evaluation
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Generation Results Evaluation

DreamGaussian VolumeDiffusion Shap-E LGM Ours



“a pair of sunglasses 
with blue lenses.”

“a red and white shoe.” “a blue and white cartoon 
character of Sonic the 

Hedgehog.”

“a red heart.”

“a donut with blue 
frosting and sprinkles.”

“a yellow and black bee 
with a white wing.”

“a silver helmet with 
horns on top.”

“a wooden pallet.”



Diverse Results from the Same Text Input



Text-guided 3D Editing



Thanks!
Some slides inspired from Tengfei Wang and Jun Gao, thanks for their nice works. 
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