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Objective and Contributions

» A novel notion of Boolean variation and new mathematical framework
of its calculus providing the chain rule similar to continuous gradient.

» A novel Boolean logic backpropagation and optimization method
allowing for deep neural networks to operate solely with Boolean
logic and to be trained directly in Boolean domain.

» State-of-the-art results compared to binarized neural networks,
evaluated on challenging tasks with ConvNets, Transformers, ...

» Significantly energy-efficient: both training & inference.

Boolean Neural Networks

Boolean Neuron. Let L be a logic gate such as AND, OR, XOR, XNOR. The

neuron’s pre-activation output is given as follows:

s = wp+ Z L(w;, x;),
i=1

where w;, x; € B .= {T,F} . (1)

Mixed Boolean-Real Neuron. For flexibility, we can extend to Boolean

weights with real-valued inputs, and real-valued weights with Boolean inputs.

Forward Activation. y =T if s > 7and y = F if s < 7 where s is the
preactivation, 7 is a fixed or learnable scalar threshold.

Boolean Training

Algorithm 1: lllustration with a FC layer.

Input Learning rate 77 number of iterations T;
Initialize: m =0; B =
1fort:O,...,T—1do
2 | Compute x/tlt following Eq. 2; ; /* 1. Forward pass */
3  Receive ;XL,‘jSlSt from downstream layer; ; /% 2. Backward pass */
k.J
4 Compute and backpropagate gt of Eq. 6; ; /+ 2.1 Backpropagation +/
5 Nt = 0, Mynchanged :== 0; ; /% 2.2 Weight update process */
6 foreach w/; do
7 Compute q;; -+ following Eq. 5;
8 Update m/ (i1 Btm tq!f“,
9 Niot < Ntot + 1,
10 if xnor(m;i™, w/f) = T then
11 wi = —wlf mptt =0 /% invert */
12 else
13 W,/ fﬂ ,/ f, Nunchanged <= Munchanged + 1 /* keep */
14 end
15  end
16 Update n™*!, B = Niyychanged/ Noot ;
17 end
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Boolean Variation

Definition 1. Order relations in B are defined as: F < T, and T > F.

Definition 2. For a, b € B, the variation from a to b, denoted 6(a — b),

is defined as: 5(a%b)defT|fb>a “0ifb=a and S Fif b < a

Definition 3. For f € F(B,D), Vx € B, write 6f(x — —x) =

o(f(x) ?ef f(—x)). . f'(x), is defined

The variation of f w.r.t. x, i.e

as: f'(x) = xnor(d(x — —x),df(x — —x)). Here, D is either a logic set B

or a numeric set, e.g., R or Z.

Remark. The variation of f w.r.t. x is T if f varies in same direction with x.

Definition 4. For f € F(Z, D), the variation of f w.r.t. x € Z is defined
as f'(x )deféf(x — x + 1), where &f is the variation defined in .

Theorem 5. The following properties hold:

oFor B5 B 4 D: (gof)(x) = xnor(g'(f(x)), f(x)), Vx € B.

oFor BL7Z 5D, xeB,if |f(x)] <1and g(f(x)) = g(f(x) — 1),
then: (g o f)(x) = xnor(g'(f(x)), f(x)).

Boolean Backpropagation

l—|—1 . .
( Boolean \ € L
[ —_ —> —
Ty, € B Layer [ Layer
Lo cRor B +— (wh, eB) (¢ Tl e
X L ) sfm ERorB € 4

k,J

Consider the Boolean /-th layer, which is assumed a fully-connected layer

X/ij-l _ Wé’j + ZL(XIL,, W,-/,j), 1 <j<n, (2)

where k is sample index, m and n are input and output sizes.

Remark. Layer | is connected to layer / + 1 that can be an activation layer, a
batch normalization, an arithmetic layer, or any others.

Atomic Variation. Consider . = xnor

0 L.oss dLoss 5X;£t1 <O oLoss
qijk = 5Wi/,j \kZXHOI‘(5 ,+1, 5W ) =" xnor( X;ﬁtl’Xk N (3)
0 Loss (5Loss 0X /H dLoss
/ Xnor [
L= . — Xnor , — Xhor Wi ). 4
gk,l,] 5X/£,I- |./ (5X/£_|_]_ 5Xk,l- ) (5X/£_|J_]_ W, ) ( )

Aggregation. Using the chain rules given by Theorem 5, we have

0Loss
q/_/ 5W Zlquk_ )‘q/_/k|_z]'q/_/k_ )|quk‘ (5)

iJj
0l.oss

gli,i = 5X/£ Z ]' gk T ‘gk I_/‘ o Z l(gk,i,j —

0 j

Boolean Optimizer With q,J

F)|gk,i,j" (6)

obtained in Eq. 5, the rule for optimizing

w! i i subjected to making the loss decreased is simply given according to its

definition as:

W
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Binarized Neural Networks — An Approximated Binary

They learn binary weights, wWyin, through full-precision latent weights, we,
using common gradient-descent methods, i.e.

Whin = SIg(Wep — 177 Gws,)
X No gains during the training!

X Sub-optimal performance due the approximations of latent weight gradient!

Experimental Results

Our method, BDLD, significantly outperforms the SOTA binarized neural
networks (BNNs) both in terms of predictive performance and energy efficiency.
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Figure: Comparisons of our method BOLD  75.6 85.9 84.1 88.7 27.1 68.7 78.4 58.8 70.9

against notable BNNs on CIFAR10 with
VGG-SMALL.

Table: Super-resolution results

measured in PSNR (dB) (1), using the
EDSR baseline.

Table: Image classification results with
RESNET18 on IMAGENET. ‘Base’ is the mapping
dimension of 1st layer.

Task Method SET5 SET14 BSD100 URBAN100 DIV2K

Training Acc. Cons. (%)
Modality Method (%) Tesla V100 FULL EDSR (FP) 38.11 33.92 32.32 32.93 35.03
2 SMALL EDSR (FP) 38.01 33.63 32.19 31.60 34.67
FP BASELINE ~ RESNET18 69.7  100.00 BALD 37.42 33.00 31.75 3026 33.82
e — 12 9 - FULL EDSR (FP) 34.65 30.52 29.25 —— 31.26
' X3 SMALL EDSR (FP) 34.37 30.24 29.10 —— 30.93
XNOR-NET 512 —— BEHLD 3356 20.70 28.72 ——  30.22
BOLD + BN 51.8 3.87 FULL EDSR (FP) 32.46 28.80 27.71 26.64 29.25
D SHORTCUT  BLREALNET-18 564 3200 w4 SMALL EDSR (FP) 32.17 28.53 27.62 26.14 29.04
' ' ' BEOLD 31.2327.97 2724 25.12 28.36
BI-REALNET:34 62.2  58.24
LARGE MODELS  BI-REALNET:152 645 « ——
MELIUS-NET:29 65.8  ——
BGLD (Base 256) 66.9 24.45 Table: Image segmentation results.
REAL2BINARY 05.4 —— Dataset Model mloU (%) (1)
(0. Resnersy | REACTNET-RESNETIS 65.5 77.89 b BASELINE 207
SWEAVELE 68.4 3751 CITYSCAPES ~ BINARY DAD-NET  58.1
BOLD + BN (Base 192)) 65.9 16.91 BOLD 67.4
BDLD (Base 256) 70.0 2445
FP BASELINE 72.1
KD: RESNETS0 POKEBNN-RESNET18 652  —— PASCAL VOC 2012 sl 67 3
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Figure: An example of CITYSCAPES.
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