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Objective and Contributions
I A novel notion of Boolean variation and new mathematical framework

of its calculus providing the chain rule similar to continuous gradient.

I A novel Boolean logic backpropagation and optimization method
allowing for deep neural networks to operate solely with Boolean
logic and to be trained directly in Boolean domain.

I State-of-the-art results compared to binarized neural networks,
evaluated on challenging tasks with ConvNets, Transformers, ...

I Significantly energy-efficient: both training & inference.

Boolean Neural Networks
Boolean Neuron. Let L be a logic gate such as AND, OR, XOR, XNOR. The
neuron’s pre-activation output is given as follows:

s = w0 +
m∑

i=1
L(wi , xi), where wi , xi ∈ B := {T,F} . (1)

Mixed Boolean-Real Neuron. For flexibility, we can extend to Boolean
weights with real-valued inputs, and real-valued weights with Boolean inputs.
Forward Activation. y = T if s ≥ τ and y = F if s < τ where s is the
preactivation, τ is a fixed or learnable scalar threshold.

Boolean Training

Algorithm 1: Illustration with a FC layer.
Input : Learning rate η, number of iterations T ;
Initialize : ml ,0

i ,j = 0; β0 = 1;
1 for t = 0, ... ,T − 1 do
2 Compute x l+1,t following Eq. 2; ; /* 1. Forward pass */

3 Receive δLoss
δx l+1,t

k ,j
from downstream layer; ; /* 2. Backward pass */

4 Compute and backpropagate g l ,t of Eq. 6; ; /* 2.1 Backpropagation */

5 Ntot := 0, Nunchanged := 0; ; /* 2.2 Weight update process */

6 foreach w l
i ,j do

7 Compute ql ,t+1
i ,j following Eq. 5;

8 Update ml ,t+1
i ,j = βtml ,t

i ,j + ηtql ,t+1
i ,j ;

9 Ntot← Ntot + 1;
10 if xnor(ml ,t+1

i ,j ,w l ,t
i ,j ) = T then

11 w l ,t+1
i ,j = ¬w l ,t

i ,j , ml ,t+1
i ,j = 0 ; /* invert */

12 else
13 w l ,t+1

i ,j = w l ,t
i ,j , Nunchanged← Nunchanged + 1 ; /* keep */

14 end
15 end
16 Update ηt+1, βt+1 = Nunchanged/Ntot ;
17 end

Boolean Variation
Definition 1. Order relations in B are defined as: F < T, and T > F.
Definition 2. For a, b ∈ B, the variation from a to b, denoted δ(a → b),
is defined as: δ(a → b) def= T if b > a, def= 0 if b = a, and def= F if b < a.
Definition 3. For f ∈ F(B,D), ∀x ∈ B, write δf (x → ¬x) :=
δ(f (x) → f (¬x)). The variation of f w.r.t. x , i.e., f ′(x), is defined
as: f ′(x) def= xnor(δ(x → ¬x), δf (x → ¬x)). Here, D is either a logic set B
or a numeric set, e.g., R or Z.
Remark. The variation of f w.r.t. x is T if f varies in same direction with x .
Definition 4. For f ∈ F(Z,D), the variation of f w.r.t. x ∈ Z is defined
as f ′(x) def= δf (x → x + 1), where δf is the variation defined in D.
Theorem 5. The following properties hold:

1 For B f→ B g→ D: (g ◦ f )′(x) = xnor(g ′(f (x)), f ′(x)), ∀x ∈ B.
2 For B f→ Z g→ D, x ∈ B, if |f ′(x)| ≤ 1 and g ′(f (x)) = g ′(f (x)− 1),

then: (g ◦ f )′(x) = xnor(g ′(f (x)), f ′(x)).

Boolean Backpropagation

Boolean
Layer Layer

Consider the Boolean l -th layer, which is assumed a fully-connected layer

x l+1
k ,j = w l

0,j +
m∑

i=1
L(x l

k ,i ,w l
i ,j), 1 ≤ j ≤ n, (2)

where k is sample index, m and n are input and output sizes.
Remark. Layer l is connected to layer l + 1 that can be an activation layer, a
batch normalization, an arithmetic layer, or any others.
Atomic Variation. Consider L = xnor

ql
i ,j ,k := δLoss

δw l
i ,j
|k = xnor(δLoss

δx l+1
k ,j

,
δx l+1

k ,j

δw l
i ,j

) xnor= xnor(δLoss
δx l+1

k ,j
, x l

k ,i), (3)

g l
k ,i ,j := δLoss

δx l
k ,i
|j = xnor(δLoss

δx l+1
k ,j

,
δx l+1

k ,j

δx l
k ,i

) xnor= xnor(δLoss
δx l+1

k ,j
,w l

i ,j). (4)

Aggregation. Using the chain rules given by Theorem 5, we have

ql
i ,j := δLoss

δw l
i ,j

=
∑

k
1(ql

i ,j ,k = T)|ql
i ,j ,k| −

∑
k

1(ql
i ,j ,k = F)|ql

i ,j ,k|, (5)

g l
k ,i := δLoss

δx l
k ,i

=
∑

j
1(g l

k ,i ,j = T)|g l
k ,i ,j| −

∑
j

1(g l
k ,i ,j = F)|g l

k ,i ,j|. (6)

Boolean Optimizer. With ql
i ,j obtained in Eq. 5, the rule for optimizing

w l
i ,j subjected to making the loss decreased is simply given according to its

definition as:
w l

i ,j = ¬w l
i ,j if xnor(ql

i ,j,w l
i ,j) = T. (7)

Binarized Neural Networks — An Approximated Binary
They learn binary weights, wbin, through full-precision latent weights, wfp

using common gradient-descent methods, i.e.
wbin = sign(wfp − η · gwfp)

7 No gains during the training!
7 Sub-optimal performance due the approximations of latent weight gradient!

Experimental Results
Our method, B⊕LD, significantly outperforms the SOTA binarized neural
networks (BNNs) both in terms of predictive performance and energy efficiency.
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Figure: Comparisons of our method
against notable BNNs on CIFAR10 with
VGG-SMALL.

Table: Natural language understanding
results with BERT models.

Method GLUE Benchmark (Accuracy, ↑)
MNLI QQP QNLI SST-2 COLA SST-B MRPC RTE Avg.

FP BERT 84.9 91.4 92.1 93.2 59.7 90.1 86.3 72.2 83.9
BINARYBERT 35.6 66.2 51.5 53.2 0.0 6.1 68.3 52.7 41.0

BIBERT 66.1 84.8 72.6 88.7 25.4 33.6 72.5 57.4 63.2
BIT 77.1 82.9 85.7 87.7 25.1 71.1 79.7 58.8 71.0

B⊕LD 75.6 85.9 84.1 88.7 27.1 68.7 78.4 58.8 70.9

Table: Image classification results with
RESNET18 on IMAGENET. ‘Base’ is the mapping
dimension of 1st layer.

Training Method Acc. Cons. (%)
Modality (%) Tesla V100

FP BASELINE RESNET18 69.7 100.00
BINARYNET 42.2 −−
XNOR-NET 51.2 −−
B⊕LD + BN 51.8 3.87

FP SHORTCUT BI-REALNET:18 56.4 32.99

LARGE MODELS
BI-REALNET:34 62.2 58.24
BI-REALNET:152 64.5 −−
MELIUS-NET:29 65.8 −−
B⊕LD (Base 256) 66.9 24.45

KD: RESNET34

REAL2BINARY 65.4 −−
REACTNET-RESNET18 65.5 77.89
BNEXT:18 68.4 37.51
B⊕LD + BN (Base 192)) 65.9 16.91
B⊕LD (Base 256) 70.0 24.45

KD: RESNET50 POKEBNN-RESNET18 65.2 −−

Table: Super-resolution results
measured in PSNR (dB) (↑), using the
EDSR baseline.

Task Method SET5 SET14 BSD100 URBAN100 DIV2K

×2
FULL EDSR (FP) 38.11 33.92 32.32 32.93 35.03
SMALL EDSR (FP) 38.01 33.63 32.19 31.60 34.67
B⊕LD 37.42 33.00 31.75 30.26 33.82

×3
FULL EDSR (FP) 34.65 30.52 29.25 −− 31.26
SMALL EDSR (FP) 34.37 30.24 29.10 −− 30.93
B⊕LD 33.56 29.70 28.72 −− 30.22

×4
FULL EDSR (FP) 32.46 28.80 27.71 26.64 29.25
SMALL EDSR (FP) 32.17 28.53 27.62 26.14 29.04
B⊕LD 31.23 27.97 27.24 25.12 28.36

Table: Image segmentation results.
Dataset Model mIoU (%) (↑)

CITYSCAPES
FP BASELINE 70.7

BINARY DAD-NET 58.1
B⊕LD 67.4

PASCAL VOC 2012
FP BASELINE 72.1

B⊕LD 67.3

Reference Image Ground Truth Full-precision B LD (Ours)

Figure: An example of CITYSCAPES.
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