AT e,
3% "V NEURAL INFORMATION
LI' PROCESSING SYSTEMS
oL,

Language Grounded Multi-agent Reinforcement Learning
with Human-interpretable Communication

Huao Li, Hossein Nourkhiz Mahjoub, Behdad Chalaki, Vaishnav Tadiparthi, Kwonjoon Lee,
Ehsan Moradi Pari, Michael Lewis, Katia Sycara

P1ttsburgh-

Honda Research Institute US UI'llVBI'Slt‘



—— Background

Ad-hoc human-agent Teamwork
e Collaborate with unseen humans without pre-coordination
e Communicate in human-interpretable language
Multi-agent Reinforcement Learning with Communication (MARL-comm)
e Optimal task performance
e Not human interpretable
Embodied agents based on Large Language Models (LLMs)
e Common sense reasoning and human-like communication
e Suboptimal performance due to hallucinations
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—— LangGround
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—— LangGround
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—— LangGround
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—— Task Performance

Episode length

Takeaways
e On par final task performance with SOTA methods

e Converge faster in complicated task environments
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—— Alignment

Agent Observation

Communication embedding space
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—— Zero-shot generalization

Methods

e Remove certain prey locations during training

e Compre LangGround agent’'s comm vector in novel states with LLM agent’'s communication
Takeaways

e LangGround is not memorizing, but aligning agent’s comm space with embedding space of human language

Table 2: Zero-shot communication in pp,.q

Prey Loc  Cossim Bleuscore Example message

(1,1 0.81 041 Moving up to converge on prey location at (1,0) for capture
(1,3) 0.81 0.27 Converging on prey location at (1,3)

(3,1) 0.82 0.51 Moving up towards prey location at (3,1)

(3,3) 0.78 0.72 Converging on prey location at (3,3)
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Demo: LLM agents + LangGround

—— Ad-hoc Teamwork

LangGround agents can accurately
share task-related information with

LLMs in natural language
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—— Ad-hoc Teamwork

Demo: LLM agents + LangGround

LangGround agents can accurately
share task-related information with
humans in natural language
LangGround agents are able to
understand novel messages
generated by LLMs and behave
accordingly
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—— Ad-hoc Teamwork

Demo: LLM agents + LangGround

e LangGround agents can accurately | Team composition P(r\‘ji‘:fggrfﬁy Pxi‘ifgﬁrfg)?y
share task-related information with
humans in natural language LangLGLr'\(jlgnd + 8.5 steps 16,5 steps
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generated by humans and behave LLMs o Step 2 SEep
accordingly
RL w/o Comm +
e LangGround agents perform better LLMs 10.6 steps 20.0 steps
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—— Takeaways

Summary

e We propose LangGround, a MARL pipeline to train agents with human-interpretable communication
e Align multi-agent communication space with human language by combining SL and RL
e Collect synthetic human data of team behaviors and communication from embodied LLM agents

Contributions

e Enhance the robustness of emergent communication learning via groundings provided by LLM agents
e Learn human interpretable communication protocols across diverse tasks
e Enable ad-hoc teamwork between MARL, LLM, and humans without pre-coordination
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