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Task: Identifying spatio-temporal drivers of measurable impacts of extreme events.
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Impact of extremes

> Which variables are associated
with the impacts? ¥

Atmospheric and land state variables

Task: Identifying spatio-temporal drivers of measurable impacts of extreme events.
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Atmospheric and land state variables

Task: Identifying spatio-temporal drivers of measurable impacts of extreme events.
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Feature embeddings
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Anomalies / Drivers of extremes

Extreme Agricultural Droughts

Quantization — Predicting extreme events impacts from drivers
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Objective Function:

min L(extreme) (Ev, E, S) + L(quantize) (Zl) + L(drive‘r) (Zq Et' S, Zq=0)

6; ¢l 1/) __
%/—/ T~ T~
predicts extremes encourages confident assigns drivers to the same
from drivers quantization code in the codebook
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Method:

V+1
L(extreme) (Ev» E» S) - = 2 (E log(Ev) + (1 - E) log(l _ Ev))
v
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V+1

L(extreme) (Ev» E» S) - = 2 (i-j: log(Ev) + (1 - E) log(l _ Ev))
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V+1

L(extreme) (Ev» E» S) - = 2 (i-j: log(Ef) T (1 _ E) log(l _ Ev))

ground truth predicted extremes from variable v,
where E,,_, is the multivariate prediction
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V+1
L(extreme) (Ev, E, S) - 2 (E log(EV) * (1 - E) log(l B Ev)) S\> mask of valid pixels
groznd tru%h éredicted extremes from variable v,

where E,,_, is the multivariate prediction
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L(quantize) (Z,)) = 2. IZ, — Sg(Sign(ZZ))”%
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L(quantize) (Z,) = jlc NZ; — Sg(Sign(ZZ))”%
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weight stop gradient

Commitment loss

Feature _,
embeddings

Computer Vision Group — University of Bonn



Method:

L (quantize) (Z) = 2 1Z; — sg(sign(Z)II5 + Ae E[H(Sign(zl))]

/ L L
weight stop gradient entropy
Commitment loss Entropy per Sample

Feature _,
embeddings
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L(driver) (Zq Et» S» Zq=0) — /1a |Zq _ Sg(Zq=0))| (1 T Et) S
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quantization code of
the normal data
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quantization code of union of extremes
the normal data at all time steps
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quantization code of union of extremes
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L(driver) (Zq Et» S» Zq=0) — /1a |Zq _ Sg(Zq=0))| (1 T Et) S

quantization code of union of extremes
the normal data at all time steps
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Synthetic data:

¥ How to reliably measure the accuracy of identifying drivers?

—> We introduce a new synthetic dataset

¢ The synthetic data are based on real-world climate signals (i.e., mean value at specific time and location).

Synthetic Variable

albedo

2m temperature total cloud cover total precipitation relative humidity volumetric soil moisture

L
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Synthetic data:

¥ How to reliably measure the accuracy of identifying drivers?

—> We introduce a new synthetic dataset

¢ The synthetic data are based on real-world climate signals (i.e., mean value at specific time and location).

albedo total cloud cover total precipitation volumetric soil moisture

Synthetic Variable

Anomalies correlated
with extreme events

Ground Truth
Anomalies
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Synthetic data:

¥ How to reliably measure the accuracy of identifying drivers?
—> We introduce a new synthetic dataset

¢ The synthetic data are based on real-world climate signals (i.e., mean value at specific time and location).

albedo 2m temperature total cloud cover total precipitation relative humidity volumetric soil moisture
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Synthetic Variable

Anomalies correlated
with extreme events

Ground Truth
Anomalies

Random anomalies
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...
Qualitative results on the synthetic CERRA reanalysis:

albedo 2m temperature total cloud cover total precipitation relative humidity

Synthetic Variable
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Qualitative results on the synthetic CERRA reanalysis:

albedo 2m temperature total cloud cover total precipitation relative humidity soil moisture

Synthetic Variable

Random anomalies
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Qualitative results on the synthetic CERRA reanalysis:

albedo 2m temperature total cloud cover total precipitation relative humidity

Synthetic Variable

Random anomalies

Target
Anomalies correlated
with extreme events
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Qualitative results on the synthetic CERRA reanalysis:

albedo 2m temperature total cloud cover total precipitation relative humidity soil moisture

Synthetic Variable

Random anomalies

Target
Anomalies correlated
with extreme events

Prediction
Qurs
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Comparison to baselines:

Baselines: interpretable forecasting

Anomaly detection results on the synthetic CERRA reanalysis.
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Comparison to baselines:

Baselines: one-class unsupervised

Anomaly detection results on the synthetic CERRA reanalysis.
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Comparison to baselines:

Baselines: , reconstruction-based

Anomaly detection results on the synthetic CERRA reanalysis.
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Comparison to baselines:

Baselines: multiple instance learning.

Anomaly detection results on the synthetic CERRA reanalysis.
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Comparison to baselines:

Baselines: interpretable forecasting, one-class unsupervised, reconstruction-based, and multiple instance learning.

Anomaly detection results on the synthetic CERRA reanalysis.
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Real-world data:

¢ We conducted experiments on two real-world reanalysis (ERA5-Land and CERRA) including data from five continents.

¢ Data:

* ERA5-Land Reanalysis (1981 —2024)
« CERRA Reanalysis (1984 -2021)

¢ Reanalysis data include variables such as:

2-meter temperature (t2m) § V"Ig_':’ 0
2-meter relative humidity (r2) & ' i ¢ |
2-meter dewpoint temperature (d2m) [
volumetric soil moisture (swv) —,

skin temperature (skt) =y

soil temperature (stl) 4 albedo (al) _L
total cloud cover (tcc) & surface pressure (sp) i
total evanoration () 444 total nrecinitation (tn)
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Qualitative results on real-world ERA5-Land reanalysis:
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Qualitative results on real-world ERA5-Land reanalysis:

Observed Predicted
extreme droughts at At extreme droughts at At
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Qualitative results on real-world ERA5-Land reanalysis:

Observed Predicted
extreme droughts at At extreme droughts at At
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Thank you for your attention

<> https://hakamshams.github.io/IDE
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