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the initial resource constraint! Ak
gi Resource inventory: B = p - T, n resources

A warehouse

Stochastic request 8, € [k]:
Deliver goods to places

Action a; € A = [m] U {0}:
Choose a way to deliver (A™), or reject

Stochastic external factor y;:
Affects the resource cost and reward

Consumes resources ¢(0, as, V¢ ), receives reward r(0¢, ag, y¢).
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# P H K . Stochastic request 6; € [k]:
k'ﬂ m HEE Li&-‘ Deliver goods to places
Stochastic external factor y;:
Affects the resource cost and reward
J Unknown distribution for request 8 and external factor y!
) Information model:

* [Full feedback.] Always learns y; after the round. ®

* [Partial feedback.] Learns y; only when a; is not a reject.



Previous Methods  PROCNE:

1 Best-policy method [ADLI16, ...]
= Pick the best policy in a UCB manner

= An O(,/mT lognT ) regret
J Dual-update method [SSF23, ...]

= Lagrangian-based control with regression oracle

* m:number of actions
* n:number of resources
* k: size of request space

= An O(/nT lognT ) regret

J Work with bandit feedback, but under certain assumptions

J Our method: re-solving-based
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3 Online optimum (VON) is hard
to compute and analyze!

PEL =T max Eg [ 2 E, [7(0,a,v)]¢(0, a)] ’
3 Fluid optimum (VFL):

acAt

maximum expected reward s.t. Eg [2 E,[c(6,a,7)]6(8,a)| < p;
under the expected resource T
constraint. Often used as the 2 ¢(0,a) <1,v8; ¢(6,a) 20,v0,a.

acAt

benchmark. VFL > 7ON,

Theorem. When VL has a unique and degenerate optimal solution,
VEL —VvON = o(VT).



The Re-Solving Heuristic £ MR,

J In each round t:

= Solve the approximated fluid optimum J(p;) with respect to the
remaining average resource constraint p, and estimated distributions

of the request and external factor, and obtain b

= Observe 6, and act according to the distribution b (6s,°).

= Update estimated distributions according to the observation.

Jp) =T- max Eq a;+ E,[r(6,a,v)]¢.(6, a)],

< pg Z $,(0,a) <1,v0; $,(6,a) = 0,V6,a.

acAt

s.t. Eg [ Z E, [c(6,a,7)]$.(6,a)

acAt
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J Fluid program has a unique and non-degenerate solution

J Stability factor D: L, distance of the fluid program to any
program with non-unique or degenerate solution(s).

= Full feedback: O ( ) gap to the fluid optimum.

= Partial feedback: O (n +I;+log T) gap to the fluid optimum.



The Re-Solving Heuristic -- Guarantee Ly RIS

J No assumption on the fluid program

= Full feedback: O(k./TlogT + n) gap to the fluid optimum.
= Partial feedback: O(kVT logT + n) gap to the fluid optimum.

. Can be generalized to continuous randomness

= With non-parameterized estimation methods
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Thank you!



